Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 280(5): E788-96, 2001 May.
Article in English | MEDLINE | ID: mdl-11287362

ABSTRACT

Although type 2 diabetes mellitus is associated with insulin resistance, many individuals compensate by increasing insulin secretion. Putative mechanisms underlying this compensation were assessed in the present study by use of 4-day glucose (GLC; 35% Glc, 2 ml/h) and lipid (LIH; 10% Intralipid + 20 U/ml heparin; 2 ml/h) infusions to rats. Within 2 days of beginning the infusion of either lipid or glucose, plasma glucose profiles were normalized (relative to saline-infused control rats; SAL; 0.45% 2 ml/h). During glucose infusion, plasma glucose was maintained in the normal range by an approximately twofold increase in plasma insulin and an approximately 80% increase in beta-cell mass. During LIH infusion, glucose profiles were also maintained in the normal range. Plasma insulin responses during feeding were doubled, and beta-cell mass increased 54%. For both groups, the increase in beta-cell mass was associated with increased beta-cell proliferation (98% increase during GLC and 125% increase during LIH). At the end of the 4-day infusions, no significant changes were observed in islet-specific gene transcription (i.e., the expression of islet hormone genes, glucose metabolism genes, and insulin transcription factors were unaffected). Two days after termination of the infusions, the glucose-stimulated plasma insulin response was increased approximately 67% in glucose-infused animals. No sustained effect on insulin secretory capacity was observed in the LIH animals. The increase in plasma insulin response after glucose infusion was achieved in the absence of any change in insulin clearance. We conclude that, in rats, an increase in insulin demand after an increase in glucose appearance or free fatty acid leads to an increase in beta-cell mass, mediated in part by an increase in beta-cell proliferation, and that these compensatory changes lead to increased insulin secretion, normal plasma glucose levels, and the maintenance of normal islet gene expression.


Subject(s)
Adaptation, Physiological , Fats/pharmacology , Glucose/pharmacology , Islets of Langerhans/drug effects , Islets of Langerhans/physiology , Animals , Fat Emulsions, Intravenous/pharmacology , Gene Expression , Infusions, Intravenous , Insulin/metabolism , Islets of Langerhans/cytology , Male , Mitosis , Rats , Rats, Sprague-Dawley , Reference Values
2.
Transplantation ; 71(2): 203-11, 2001 Jan 27.
Article in English | MEDLINE | ID: mdl-11213060

ABSTRACT

BACKGROUND: Encapsulation of islets has been widely investigated as a treatment for diabetes. The characteristics and dynamics of insulin secretion by encapsulated islets in response to glucose and other secretagogues are not well understood. METHODS: In our study, macroencapsulated syngeneic islets at 3-4 wk after transplantation were studied for insulin release in response to i.v. glucose (hyperglycemic clamps at 250 or 350 mg/dl plasma glucose), arginine (i.v. bolus, 100 mg/kg), glucagon-like peptide-1 (i.v. infusion for 20 min, 2.2 pmol/kg/min), and meal challenge. Syngeneic islets (6000 islets) were encapsulated in alginate macrobeads (2-3 mm diameter) with or without poly-L-lysine coating and transplanted into the peritoneal cavity of STZ-diabetic Lewis rats. Normal (nontransplanted) and diabetic Lewis rats transplanted with "naked" islets under the kidney capsule served as controls. RESULTS: Animals transplanted with macrobeads displayed subnormal insulin responses to glucose, arginine, and glucagon-like peptide-1 despite achieving normoglycemia faster than animals with renal subcapsular islet transplants. Plasma insulin responses to meal challenges were blunted in animals with macrobeads resulting in increased plasma glucose excursions. CONCLUSIONS: We conclude that, after transplantation into diabetic Lewis rats, macroencapsulated islets have significantly impaired insulin secretion despite achieving normal fed glycemic levels.


Subject(s)
Alginates/administration & dosage , Capsules/administration & dosage , Diabetes Mellitus/therapy , Insulin/metabolism , Islets of Langerhans/cytology , Animals , Blood Glucose/analysis , Body Weight/physiology , Diabetes Mellitus/pathology , Eating , Fasting , Glucose Clamp Technique , Insulin Secretion , Islets of Langerhans/pathology , Male , Rats , Rats, Inbred Lew
SELECTION OF CITATIONS
SEARCH DETAIL
...