Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
2.
Front Plant Sci ; 7: 1636, 2016.
Article in English | MEDLINE | ID: mdl-27933068

ABSTRACT

Pearl millet is a multipurpose grain/fodder crop of the semi-arid tropics, feeding many of the world's poorest and most undernourished people. Genetic variation among adapted pearl millet inbreds and hybrids suggests it will be possible to improve grain micronutrient concentrations by selective breeding. Using 305 loci, a linkage map was constructed to map QTLs for grain iron [Fe] and zinc [Zn] using replicated samples of 106 pearl millet RILs (F6) derived from ICMB 841-P3 × 863B-P2. The grains of the RIL population were evaluated for Fe and Zn content using atomic absorption spectrophotometer. Grain mineral concentrations ranged from 28.4 to 124.0 ppm for Fe and 28.7 to 119.8 ppm for Zn. Similarly, grain Fe and Zn in open pollinated seeds ranged between 22.4-77.4 and 21.9-73.7 ppm, respectively. Mapping with 305 (96 SSRs; 208 DArT) markers detected seven linkage groups covering 1749 cM (Haldane) with an average intermarker distance of 5.73 cM. On the basis of two environment phenotypic data, two co-localized QTLs for Fe and Zn content on linkage group (LG) 3 were identified by composite interval mapping (CIM). Fe QTL explained 19% phenotypic variation, whereas the Zn QTL explained 36% phenotypic variation. Likewise for open pollinated seeds, the QTL analysis led to the identification of two QTLs for grain Fe content on LG3 and 5, and two QTLs for grain Zn content on LG3 and 7. The total phenotypic variance for Fe and Zn QTLs in open pollinated seeds was 16 and 42%, respectively. Analysis of QTL × QTL and QTL × QTL × environment interactions indicated no major epistasis.

3.
Front Plant Sci ; 7: 1389, 2016.
Article in English | MEDLINE | ID: mdl-27721815

ABSTRACT

West Africa (WA) is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P) is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, often unaffordable to resource-poor subsistence farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1) The global problem of P scarcity and how it will affect WA farmers; (2) Soil P dynamics in WA soils; (3) Plant responses to P deficiency; (4) Opportunities to breed for improved crop adaptation to P-limited conditions; (5) Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6) Systems approaches to address soil P-deficiency in WA. Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not, however, be a sustainable solution in itself in the long-term without replenishing the P removed from the system in harvested produce. We therefore propose the use of integrated soil fertility management and systems-oriented management such as enhanced crop-tree-livestock integration in combination with P-use-efficiency-improved varieties. Recycling P from animal bones, human excreta and urine are also possible approaches toward a partially closed and efficient P cycle in WA.

4.
PLoS One ; 10(5): e0122165, 2015.
Article in English | MEDLINE | ID: mdl-25970600

ABSTRACT

A pearl millet inbred germplasm association panel (PMiGAP) comprising 250 inbred lines, representative of cultivated germplasm from Africa and Asia, elite improved open-pollinated cultivars, hybrid parental inbreds and inbred mapping population parents, was recently established. This study presents the first report of genetic diversity in PMiGAP and its exploitation for association mapping of drought tolerance traits. For diversity and genetic structure analysis, PMiGAP was genotyped with 37 SSR and CISP markers representing all seven linkage groups. For association analysis, it was phenotyped for yield and yield components and morpho-physiological traits under both well-watered and drought conditions, and genotyped with SNPs and InDels from seventeen genes underlying a major validated drought tolerance (DT) QTL. The average gene diversity in PMiGAP was 0.54. The STRUCTURE analysis revealed six subpopulations within PMiGAP. Significant associations were obtained for 22 SNPs and 3 InDels from 13 genes under different treatments. Seven SNPs associations from 5 genes were common under irrigated and one of the drought stress treatments. Most significantly, an important SNP in putative acetyl CoA carboxylase gene showed constitutive association with grain yield, grain harvest index and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding protein gene was significantly associated with both stay-green and grain yield traits under drought stress. This can be used as a functional marker for selecting high yielding genotypes with 'stay green' phenotype under drought stress. The present study identified useful marker-trait associations of important agronomics traits under irrigated and drought stress conditions with genes underlying a major validated DT-QTL in pearl millet. Results suggest that PMiGAP is a useful panel for association mapping. Expression patterns of genes also shed light on some physiological mechanisms underlying pearl millet drought tolerance.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Pennisetum/genetics , Plant Proteins/genetics , Quantitative Trait Loci , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Adaptation, Biological/genetics , Africa , Asia , Chlorophyll Binding Proteins/genetics , Chlorophyll Binding Proteins/metabolism , Chromosome Mapping , Droughts , Genetic Linkage , Genetic Markers , Genetic Variation , Genotype , Phenotype , Plant Breeding , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Seed Bank
5.
Am J Bot ; 99(6): e245-50, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22645098

ABSTRACT

PREMISE OF THE STUDY: Discrepancies in terms of genotyping data are frequently observed when comparing simple sequence repeat (SSR) data sets across genotyping technologies and laboratories. This technical concern introduces biases that hamper any synthetic studies or comparison of genetic diversity between collections. To prevent this for Sorghum bicolor, we developed a control kit of 48 SSR markers. METHODS AND RESULTS: One hundred seventeen markers were selected along the genome to provide coverage across the length of all 10 sorghum linkage groups. They were tested for polymorphism and reproducibility across two laboratories (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement [CIRAD], France, and International Crops Research Institute for the Semi-Arid Tropics [ICRISAT], India) using two commonly used genotyping technologies (polyacrylamide gel-based technology with LI-COR sequencing machines and capillary systems with ABI sequencing apparatus) with DNA samples from a diverse set of 48 S. bicolor accessions. CONCLUSIONS: A kit for diversity analysis (http://sat.cirad.fr/sat/sorghum_SSR_kit/) was developed. It contains information on 48 technically robust sorghum microsatellite markers and 10 DNA controls. It can further be used to calibrate sorghum SSR genotyping data acquired with different technologies and compare those to genetic diversity references.


Subject(s)
Genetic Variation , Genotyping Techniques/methods , Microsatellite Repeats/genetics , Sorghum/genetics , Alleles , DNA Primers/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Genotype , Molecular Sequence Data , Polymerase Chain Reaction , Polymorphism, Genetic , Sequence Analysis, DNA , Sorghum/classification , Species Specificity
6.
Genet Mol Biol ; 35(1): 106-18, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22481882

ABSTRACT

This report describes the construction of integrated genetic maps in pearl millet involving certain purple phenotype and simple sequence repeat (SSR) markers. These maps provide a direct means of implementing DNA marker-assisted selection and of facilitating "map-based cloning" for engineering novel traits. The purple pigmentation of leaf sheath, midrib and leaf margin was inherited together 'en bloc' under the control of a single dominant locus (the 'midrib complex') and was inseparably associated with the locus governing the purple coloration of the internode. The purple panicle was caused by a single dominant locus. Each of the three characters (purple lamina, purple stigma and purple seed) was governed by two complementary loci. One of the two loci governing purple seed was associated with the SSR locus Xpsmp2090 in linkage group 1, with a linkage value of 22 cM, while the other locus was associated with the SSR locus Xpsmp2270 in linkage group 6, with a linkage value of 23 cM. The locus for purple pigmentation of the midrib complex was either responsible for pigmentation of the panicle in a pleiotropic manner or was linked to it very closely and associated with the SSR locus Xpsmp2086 in linkage group 4, with a suggestive linkage value of 21 cM. A dominant allele at this locus seems to be a prerequisite for the development of purple pigmentation in the lamina, stigma and seed. These findings suggest that the locus for pigmentation of the midrib complex might regulate the basic steps in anthocyanin pigment development by acting as a structural gene while other loci regulate the formation of color in specific plant parts.

7.
Genet. mol. biol ; 35(1): 106-118, 2012. ilus, tab
Article in English | LILACS | ID: lil-616991

ABSTRACT

This report describes the construction of integrated genetic maps in pearl millet involving certain purple phenotype and simple sequence repeat (SSR) markers. These maps provide a direct means of implementing DNA marker-assisted selection and of facilitating "map-based cloning" for engineering novel traits. The purple pigmentation of leaf sheath, midrib and leaf margin was inherited together 'en bloc' under the control of a single dominant locus (the 'midrib complex') and was inseparably associated with the locus governing the purple coloration of the internode. The purple panicle was caused by a single dominant locus. Each of the three characters (purple lamina, purple stigma and purple seed) was governed by two complementary loci. One of the two loci governing purple seed was associated with the SSR locus Xpsmp2090 in linkage group 1, with a linkage value of 22 cM, while the other locus was associated with the SSR locus Xpsmp2270 in linkage group 6, with a linkage value of 23 cM. The locus for purple pigmentation of the midrib complex was either responsible for pigmentation of the panicle in a pleiotropic manner or was linked to it very closely and associated with the SSR locus Xpsmp2086 in linkage group 4, with a suggestive linkage value of 21 cM. A dominant allele at this locus seems to be a prerequisite for the development of purple pigmentation in the lamina, stigma and seed. These findings suggest that the locus for pigmentation of the midrib complex might regulate the basic steps in anthocyanin pigment development by acting as a structural gene while other loci regulate the formation of color in specific plant parts.


Subject(s)
Genetic Markers , Pennisetum/genetics , Pigmentation/genetics , Phenotype , Plant Leaves/genetics , Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...