Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 9: 965315, 2022.
Article in English | MEDLINE | ID: mdl-36579187

ABSTRACT

Green leaf volatiles (GLVs) cover a group of mainly C6-and C9-aldehydes, -alcohols and -esters. Their name refers to their characteristic herbal and fruity scent, which is similar to that of freshly cut grass or vegetables. Lipoxygenases (LOXs) catalyze the peroxidation of unsaturated fatty acids. The resulting hydroperoxy fatty acids are then cleaved into aldehydes and oxo acids by fatty acid hydroperoxide lyases (HPLs). Herein, we equipped the yeast Komagataella phaffii with recombinant genes coding for LOX and HPL, to serve as a biocatalyst for GLV production. We expressed the well-known 13S-specific LOX gene from Pleurotus sapidus and a compatible HPL gene from Medicago truncatula. In bioconversions, glycerol induced strains formed 12.9 mM hexanal using whole cells, and 8 mM hexanol was produced with whole cells induced by methanol. We applied various inducible and constitutive promoters in bidirectional systems to influence the final ratio of LOX and HPL proteins. By implementing these recombinant enzymes in Komagataella phaffii, challenges such as biocatalyst supply and lack of product specificity can finally be overcome.

2.
ACS Catal ; 12(24): 15668-15674, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-37180375

ABSTRACT

The synthesis of aldehydes from carboxylic acids has long been a challenge in chemistry. In contrast to the harsh chemically driven reduction, enzymes such as carboxylic acid reductases (CARs) are considered appealing biocatalysts for aldehyde production. Although structures of single- and didomains of microbial CARs have been reported, to date no full-length protein structure has been elucidated. In this study, we aimed to obtain structural and functional information regarding the reductase (R) domain of a CAR from the fungus Neurospora crassa (Nc). The NcCAR R-domain revealed activity for N-acetylcysteamine thioester (S-(2-acetamidoethyl) benzothioate), which mimics the phosphopantetheinylacyl-intermediate and can be anticipated as the minimal substrate for thioester reduction by CARs. The determined crystal structure of the NcCAR R-domain reveals a tunnel that putatively harbors the phosphopantetheinylacyl-intermediate, which is in good agreement with docking experiments performed with the minimal substrate. In vitro studies were performed with this highly purified R-domain and NADPH, demonstrating carbonyl reduction activity. The R-domain was able to accept not only a simple aromatic ketone but also benzaldehyde and octanal, which are typically considered to be the final product of carboxylic acid reduction by CAR. Also, the full-length NcCAR reduced aldehydes to primary alcohols. In conclusion, aldehyde overreduction can no longer be attributed exclusively to the host background.

3.
J Biotechnol ; 345: 47-54, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34954290

ABSTRACT

Carboxylic acid reductases (CARs) are well-known for their eminent selective one-step synthesis of carboxylic acids to aldehydes. To date, however, few CARs have been identified and characterized, especially from fungal sources. In this study, the CAR from the white rot fungus Pycnoporus cinnabarinus (PcCAR2) was expressed in Escherichia coli. PcCAR2's biochemical properties were explored in vitro after purification, revealing a melting temperature of 53 °C, while the reaction temperature optimum was at 35 °C. In the tested buffers, the enzyme showed a pH optimum of 6.0 and notably, a similar activity up to pH 7.5. PcCAR2 was immobilized to explore its potential as a recyclable biocatalyst. PcCAR2 showed no critical loss of activity after six cycles, with an average conversion to benzaldehyde of more than 85% per cycle. Immobilization yield and efficiency were 82% and 76%, respectively, on Ni-sepharose. Overall, our findings contribute to the characterization of a thermotolerant fungal CAR, and established a more sustainable use of the valuable biocatalyst.


Subject(s)
Basidiomycota , Polyporaceae , Oxidoreductases
4.
Biotechnol J ; 15(11): e2000089, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32749051

ABSTRACT

Pseudomonas aeruginosa lipoxygenase (PaLOX) catalyzes the peroxidation of unsaturated fatty acids. Not only linoleic acid, but also linolenic acid and oleic acid are oxidized. The natural host secretes PaLOX into the periplasmic space. Herein, the aim is to secrete PaLOX to the culture supernatant of Pichia pastoris. Since protein background in the culture supernatant is typically rather low, this strategy allows for almost pure production of PaLOX applicable for the valorization of renewable fatty acids, for example for the production of green leaf volatiles. Using the CAT1 promoter system and the well-established α-factor signal sequence for secretion, methanol- and glycerol-induced secretion are compared and the latter shows four times more LOX activity in the culture supernatant under methanol-free conditions. In addition, secreted PaLOX is purified and the specific activity with enzyme in culture supernatant is compared. Notably, the predominant specific activity is achieved for enzyme in culture supernatant - 11.6 U mg-1 - reaching five times higher specific activity than purified PaLOX.


Subject(s)
Glycerol , Pichia , Lipoxygenase/genetics , Methanol , Pichia/genetics , Pseudomonas aeruginosa/genetics , Recombinant Proteins/genetics , Saccharomycetales
SELECTION OF CITATIONS
SEARCH DETAIL
...