Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag Res ; : 734242X241227368, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297815

ABSTRACT

Liquid fertilizers (LFs) produced by microwave-assisted acid hydrolysis of livestock and poultry wastes were applied to potted hot pepper (Capsicum annuum L.) to evaluate their potential to be used as amino acid LFs. A preliminary experiment was conducted to determine the optimum acid-hydrolysis conditions for producing LFs from a mixture of pig hair and faeces (P) and another mixture of chicken feathers and faeces (C). Two LFs were produced under the optimum acid-hydrolysis conditions (acidification by sulphuric acid (7.5 mol L-1) in a microwave (200 W) for 90 minutes), and a commercial amino acid LF (Guo Guang (GG)) was used for comparison. P, C and GG fertilizers were tested in potted hot pepper cultivation at two doses, whereas no fertilizer application served as the control (CK). P and C fertilizers significantly increased the fruit yield compared with GG fertilizer, particularly at the higher dose. Moreover, the treatments improved the fruit vitamin C and soluble sugar contents in the order of C > P > GG compared with CK. These results could be attributed to more types of amino acids in C fertilizer than in P and GG fertilizers. The results also indicated that the prepared fertilizers could significantly increase the shoot and root dry weight, soil available nitrogen and phosphorus contents and nitrogen, phosphorus, and potassium (NPK) uptake by plants compared with CK. In conclusion, microwave-assisted acid hydrolysis could effectively convert unusable wastes into valuable fertilizers comparable or even superior to commercial fertilizers.

2.
Environ Sci Pollut Res Int ; 30(45): 101026-101034, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37644271

ABSTRACT

Lignocellulosic biomass ash (BA) has certain adsorption and passivation effects on heavy metals, but its function is generally weak. Amino acid salt can facilitate the leaching of heavy metals in soil. Therefore, modification of BA with amino acid salt may realize a higher leaching rate and better passivation of heavy metals in soil. In this study, BA was modified by amino acid hydrolysate obtained from the hydrolysis of chicken feathers by sulfuric acid. The physicochemical properties of BA and modified BA (MBA), their effects on Chinese cabbage (CC) yield and nutritional quality, and passivation effects on soil cadmium (Cd) were compared, and the related mechanisms were investigated. SEM-EDS, XRD, and FTIR demonstrated that BA was a CaCO3-type soil amendment, while MBA was a CaSO4-type soil amendment with the loading of amino acid. Compared with BA, MBA significantly increased the fresh weight, soluble sugar, vitamin C (Vc), and protein contents of CC in both non-Cd contaminated soil and Cd contaminated soil, and obviously decreased the nitrate content and Cd uptake of CC in Cd-contaminated soil. After the application of MBA, cadmium species in potted soil were transformed from higher plant availability, representing by exchangeable and carbonate-bound, into lower plant availability, representing by iron-manganese oxide bound, which was identified as the key reason for the significant reduction of Cd content in CC under MBA application.


Subject(s)
Brassica , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Biomass , Amino Acids , Metals, Heavy/analysis , Soil/chemistry , Brassica/metabolism , Sodium Chloride , Sodium Chloride, Dietary , Soil Pollutants/analysis
3.
PeerJ ; 8: e9267, 2020.
Article in English | MEDLINE | ID: mdl-32566397

ABSTRACT

BACKGROUND: Untreated wastewater carries substantial amount of heavy metals and causes potential ecological risks to the environment, food quality, soil health and sustainable agriculture. METHODOLOGY: In order to reduce the incidence of nickel (Ni2+) contamination in soils, two separate experiments (incubation and greenhouse) were conducted to investigate the potentials of rice straw biochar and elemental sulfur in remediating Ni2+ polluted soil due to the irrigation with wastewater. Five incubation periods (1, 7, 14, 28 and 56 days), three biochar doses (0, 10 and 20 g kg-1 of soil) and two doses of sulfur (0 and 5 g kg-1 of soil) were used in the incubation experiment then the Ni2+ was extracted from the soil and analyzed, while ryegrass seeds Lolium perenne L. (Poales: Poaceae) and the same doses of biochar and sulfur were used in the greenhouse experiment then the plants Ni2+-uptake was determined. RESULTS: The results of the incubation experiment revealed a dose-dependent reduction of DTPA-extractable Ni2+ in soils treated with biochar. Increasing the biochar dose from 0 g kg-1 (control) to 10 or 20 g kg-1 (treatments) decreased the DTPA-extractable Ni2+ from the soil by 24.6% and 39.4%, respectively. The application of sulfur increased the Ni2+-uptake by ryegrass plant which was used as hyper-accumulator of heavy metals in the green house experiment. However, the biochar decreased the Ni2+-uptake by the plant therefore it can be used as animal feed. CONCLUSIONS: These results indicate that the biochar and sulfur could be applied separately to remediate the Ni2+-contaminated soils either through adsorbing the Ni2+ by biochar or increasing the Ni2+ availability by sulfur to be easily uptaken by the hyper-accumulator plant, and hence promote a sustainable agriculture.

4.
Environ Sci Pollut Res Int ; 27(29): 37121-37133, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32583108

ABSTRACT

Copper (Cu) is an abundant essential micronutrient element in various rocks and minerals and is required for a variety of metabolic processes in both prokaryotes and eukaryotes. However, excess Cu can disturb normal development by adversely affecting biochemical reactions and physiological processes in plants. The present study was conducted to explore the potential of gibberellic acid (GA3) on fibrous jute (Corchorus capsularis L.) seedlings grown on Cu mining soil obtained from Hubei Province China. Exogenous application of GA3 (10, 50, and 100 mg/L) on 60-day-old seedlings of C. capsularis which was able to grow in highly Cu-contaminated soil (2221 mg/kg) to study different morphological, physiological, and Cu uptake and accumulation in different parts of C. capsularis seedlings. According to the results, increasing concentration of GA3 (more likely 100 mg/L) alleviates Cu toxicity in C. capsularis seedlings by increasing plant growth, biomass, photosynthetic pigments, and gaseous exchange attributes. The results also showed that exogenous application of GA3 reduced oxidative stress in C. capsularis seedlings by the generation of extra reactive oxygen species (ROS). The reduction in oxidative stress in C. capsularis seedlings is because that plant has strong enzymatic antioxidants [superoxidase dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT)], which ultimately increased their activities to overcome oxidative damage in the cells/tissues. In addition to the plant growth, biomass, and photosynthesis, foliar application of GA3 also helps to increase metal (Cu) concentration in different parts of the plants when compared to 0 mg/L of application of GA3. From these findings, we can conclude that foliar application of GA3 plays a promising role in reducing ROS generation in the plant cells/tissues and increased phytoextraction of Cu in different plant parts. However, more investigation is needed on field experiments to find a combination of GA3 with a very higher concentration of Cu using fibrous C. capsularis.


Subject(s)
Corchorus , Soil Pollutants/analysis , Antioxidants , Biodegradation, Environmental , China , Copper/analysis , Gibberellins , Oxidative Stress , Plant Roots/chemistry , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...