Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 820: 146218, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35134469

ABSTRACT

OBJECTIVES: Hematopoietic stem cells (HSCs) reside in a specialised microenvironment in the bone marrow, which is majorly composed of mesenchymal stem cells (MSCs) and its' derivatives. This study aimed to investigate the regulatory role of MSCs to decipher the cellular and humoral communications on HSCs' proliferation, self-renewal, and differentiation at the transcriptomic level. MATERIALS AND METHODS: Microarray assay was employed to analyse the gene expression profile of HSCs that imparted by MSCs during co-culture. RESULTS: The proliferation of human umbilical cord blood-derived HSCs (hUC-HSCs) markedly propagated when MSCs were used as the feeder layer, without disturbing the undifferentiated state of HSCs, and reduced the cell death of HSCs. Upon co-culture with MSCs, the global microarray analysis of HSCs disclosed 712 differentially expressed genes (DEGs) (561 up-regulated and 151 down-regulated). The dysregulations of various transcripts were enriched for cellular functions such as cell cycle (including CCND1), apoptosis (including TNF), and genes related to signalling pathways governing self-renewal, as well as WNT5A from the Wnt signalling pathway, MAPK, Hedgehog, FGF2 from FGF, Jak-STAT, and PITX2 from the TGF-ß signalling pathway. To concur this, real-time quantitative PCR (RT-qPCR) was utilised for corroborating the microarray results from five of the most dysregulated genes. CONCLUSION: This study elucidates the underlying mechanisms of the mitogenic influences of MSCs on the propagation of HSCs. The exploitation of such mechanisms provides a potential means for achieving larger quantities of HSCs in vitro, thus obviating the need for manipulating their differentiation potential for clinical application.


Subject(s)
Cell Proliferation , Hematopoietic Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Signal Transduction , Bone Marrow Cells/metabolism , Cell Differentiation , Coculture Techniques , Humans , Microarray Analysis/methods , Transcriptome
2.
Med Oncol ; 37(11): 100, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33047234

ABSTRACT

In the recent years, using genetically modified T cells has been known as a rapid developing therapeutic approach due to the heartwarming results of clinical trials with patients suffering from relapsed or refractory (R/R) hematologic malignancies such as R/R Acute Lymphoblastic Leukemia (R/R ALL). One of these renowned approaches is Chimeric antigen receptors (CARs). CARs are synthetic receptors with the ability to be expressed on the surface of T lymphocytes and are specifically designed to target a tumor-associated antigen (TAA) of interest. CAR-expressing T cells have the capability of proliferating and maintaining their immunological functionality in the recipient body but like any other therapeutic approach, the safety, effectiveness, and specificity enhancement of CAR T cells still lingers in the ambiguity arena. Genetic manipulation methods, expansion protocols, infusion dosage, and conditioning regimens are all among crucial factors which can affect the efficacy of CAR T cell-based cancer therapy. In this article, we discuss the studies that have focused on various aspects that affect the efficacy and persistence of CAR T-cell therapy for ALL treatment and provide a widespread overview regarding the practical approaches capable of elevating the effectiveness and lessening the relative toxicities attributed to it.


Subject(s)
Immunotherapy, Adoptive , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/transplantation , Antigens, CD19/immunology , Antigens, Neoplasm/immunology , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/chemistry , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...