Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 133: 112020, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608449

ABSTRACT

Celiac disease (CD) is a chronic autoimmune enteropathy and multifactorial disease caused by inappropriate immune responses to gluten in the small intestine. Weight loss, anemia, osteoporosis, arthritis, and hepatitis are among the extraintestinal manifestations of active CD. Currently, a strict lifelong gluten-free diet (GFD) is the only safe, effective, and available treatment. Despite the social burden, high expenses, and challenges of following a GFD, 2 to 5 percent of patients do not demonstrate clinical or pathophysiological improvement. Therefore, we need novel and alternative therapeutic approaches for patients. Innovative approaches encompass a broad spectrum of strategies, including enzymatic degradation of gluten, inhibition of intestinal permeability, modulation of the immune response, inhibition of the transglutaminase 2 (TG2) enzyme, blocking antigen presentation by HLA-DQ2/8, and induction of tolerance. Hence, this review is focused on comprehensive therapeutic strategies ranging from dietary approaches to novel methods such as antigen-based immunotherapy, cell and gene therapy, and the usage of nanoparticles for CD treatment.


Subject(s)
Celiac Disease , Diet, Gluten-Free , Humans , Celiac Disease/diet therapy , Celiac Disease/therapy , Celiac Disease/immunology , Animals , Cell- and Tissue-Based Therapy/methods , Protein Glutamine gamma Glutamyltransferase 2 , Immunotherapy/methods , Glutens/immunology , Transglutaminases/immunology , Transglutaminases/metabolism
2.
Biomed Pharmacother ; 167: 115505, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716113

ABSTRACT

Mesenchymal stem cells (MSCs), as self-renewing multipotent stromal cells, have been considered promising agents for cancer treatment. A large number of studies have demonstrated the valuable properties of MSC-based treatment, such as low immunogenicity and intrinsic tumor-trophic migratory properties. To enhance the potency of MSCs for therapeutic purposes, equipping MSCs with targeted delivery functions using genetic engineering is highly beneficial. Genetically engineered MSCs can express tumor suppressor agents such as pro-apoptotic, anti-proliferative, anti-angiogenic factors and act as ideal delivery vehicles. MSCs can also be loaded with nanoparticle drugs for increased efficacy and externally moderated targeting. Moreover, exosomes secreted by MSCs have important physiological properties, so they can contribute to intercellular communication and transfer cargo into targeted tumor cells. The precise role of genetically modified MSCs in tumor environments is still up for debate, but the beginning of clinical trials has been confirmed by promising results from preclinical investigations of MSC-based gene therapy for a wide range of malignancies. This review highlights the advanced techniques of engineering/nano-engineering and MSC-derived exosomes in tumor-targeted therapy.

3.
Mol Biol Rep ; 50(7): 6019-6027, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286776

ABSTRACT

BACKGROUND: Chinese hamster ovary (CHO) cells are the most predominantly utilized host for the production of monoclonal antibodies (mAbs) and other complex glycoproteins. A major challenge in the process of CHO cell culture is the occurrence of cell death following different stressful conditions, which hinders the production yield. Engineering genes involved in pathways related to cell death is a remarkable strategy to delay apoptosis, improve cell viability and enhance productivity. SIRT6 is a stress-responsive protein that regulates DNA repair, maintains genome integrity, and is critical for longevity and cell survival in organisms. METHODS AND RESULTS: In this study, SIRT6 was stably overexpressed in CHO-K1 cells and the impact of its expression on apoptosis related gene expression profile, viability, apoptosis, and mAb productivity was investigated. While a significant increase was observed in Bcl-2 mRNA level, caspase-3 and Bax mRNA levels were decreased in the SIRT6 engineered cells compared to the parental CHO-K1 cells. Moreover, improved cell viability and decreased rate of apoptotic progression was observed in a SIRT6-derived clone in comparision to the CHO-K1 cells during 5 days of batch culture. anti-CD52 IgG1 mAb titers were improved up to 1.7- and 2.8-fold in SIRT6-derived clone during transient and stable expression, respectively. CONCLUSIONS: This study indicates the positive effects of SIRT6 overexpression on cell viability and anti-CD52 IgG1 mAb expression in CHO-K1 cells. Further studies are needed to examine the potential of SIRT6-engineered host cells for the production of recombinant biotherapeutics in industrial settings.


Subject(s)
Antibodies, Monoclonal , Sirtuins , Cricetinae , Animals , Cricetulus , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/genetics , Cell Survival/genetics , CHO Cells , Apoptosis/genetics , Immunoglobulin G , Sirtuins/genetics , Recombinant Proteins/genetics
4.
Environ Res ; 227: 115705, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36958383

ABSTRACT

Alzheimer's disease, a progressive neurological condition, is associated with various internal and external risk factors in the disease's early stages. Early diagnosis of Alzheimer's disease is essential for treatment management. Circulating exosomal microRNAs could be a new class of valuable biomarkers for early Alzheimer's disease diagnosis. Different kinds of biosensors have been introduced in recent years for the detection of these valuable biomarkers. Isolation of the exosomes is a crucial step in the detection process which is traditionally carried out by multi-step ultrafiltration. Microfluidics has improved the efficiency and costs of exosome isolation by implementing various effects and forces on the nano and microparticles in the microchannels. This paper reviews recent advancements in detecting Alzheimer's disease related exosomal microRNAs based on methods such as electrochemical, fluorescent, and SPR. The presented devices' pros and cons and their efficiencies compared with the gold standard methods are reported. Moreover, the application of microfluidic devices to detect Alzheimer's disease related biomarkers is summarized and presented. Finally, some challenges with the performance of novel technologies for isolating and detecting exosomal microRNAs are addressed.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Exosomes , MicroRNAs , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Biomarkers , Exosomes/genetics
5.
Curr Med Chem ; 30(27): 3119-3136, 2023.
Article in English | MEDLINE | ID: mdl-36082869

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia and joint damage. Systemic complications and progressive disability are burdens that lead to a significant socio-economic costs in patients with RA. Current RA biomarkers used in predicting, diagnosing, and monitoring the treatment of the disease have not been very successful. Moreover, only 60% of patients show a satisfactory response to current biological and conventional therapies. Studies on immunometabolism have suggested that dysregulated enzymes, transcription factors, metabolites, and metabolic pathways could be considered potential therapeutic targets for the treatment of RA. Factors such as the high concentration of various intermediate molecules arising from metabolism, hypoxia, lack of nutrients, and other metabolic alterations affect local immune responses and preserve a state of chronic inflammation in synovial tissues. Fortunately, in vitro and in vivo studies have shown that targeting specific metabolic pathways is associated with a decreased level of inflammation. Specifically, targeting metabolic intermediates, such as succinate or lactate, has shown promising clinical outcomes in RA treatment. These findings open an avenue for the identification of novel biomarkers for diagnosis, prognosis, and determining the success of various treatments in RA patients, as well as the discovery of new therapeutic targets.


Subject(s)
Arthritis, Rheumatoid , Humans , Arthritis, Rheumatoid/drug therapy , Synovial Membrane/metabolism , Inflammation/metabolism , Prognosis , Biomarkers/metabolism , Chronic Disease
6.
Mol Biol Rep ; 48(12): 7883-7892, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34657270

ABSTRACT

BACKGROUND: This study aimed to identify metallo-ß-lactamases (MBLs) and AmpC ß-lactamases-producing Escherichia coli isolates obtained from hemodialysis (HD) patients with urinary tract infections (UTI). METHODS AND RESULTS: A total of 257 HD patients with UTI were included in this study, from which 47 E. coli isolates were collected. Antibiotic susceptibility was tested by disc diffusion method. MBLs and AmpC production were phenotypically detected by imipenem-ethylenediaminetetracetate and cefoxitin/boronic acid assays, respectively. The presence of MBLs and AmpC genes was examined by polymerase chain reaction (PCR). Fosfomycin and ampicillin were the most and the least effective antibiotics against E. coli isolates, respectively. Moreover, 61.7% (29/47) of E. coli isolates were multidrug-resistant with seven different antibiotypes. Antibiotype V (AMP-CIP-IMP-MEM-CPD-CRO-CTX-GEN-LEV-SXT-TOB) was the most prevalent profile. Besides, 24 (51.1%) isolates were simultaneously resistant to imipenem and meropenem. Phenotypic assay showed MBL production in 16 (66.7%) of the 24 carbapenem-resistant E. coli isolates. The distribution of MBL genes in carbapenem-resistant E. coli was as follows: blaIMP 18 (72%), blaVIM 7 (28%), and blaNDM 1 (4%). AmpC was detected in 61.7% (29/47) of the isolates using the phenotypic method. The presence of AmpC genes was confirmed by PCR in only 26 of 29 (86.7%) AmpC producers. The frequencies of blaDHA-1, blaACC, and blaCMY-2 were 6 (20.7%), 11 (37.9%), and 21 (72.4%), respectively. CONCLUSIONS: The emergence of MBL and AmpC coproducing E. coli isolates calls for an urgent surveillance program for timely diagnosis and screening of these genes in our healthcare systems.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Infections/metabolism , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Drug Resistance, Microbial/drug effects , Escherichia coli/isolation & purification , Escherichia coli/metabolism , Escherichia coli/pathogenicity , Escherichia coli Infections/genetics , Escherichia coli Proteins/genetics , Humans , Microbial Sensitivity Tests , Renal Dialysis/adverse effects , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology
8.
Inflammation ; 44(2): 466-479, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33113036

ABSTRACT

Fibroblast-like synoviocytes (FLSs) are important non-immune cells located mostly in the inner layer of the synovium. Indeed, these cells are specialized mesenchymal cells, implicated in collagen homeostasis of the articular joint and provide extracellular matrix (ECM) materials for cartilage and contribute to joint destruction via multiple mechanisms. RA FLS interactions with immune and non-immune cells lead to the development and organization of tertiary structures such as ectopic lymphoid-like structures (ELSs), tertiary lymphoid organs (TLOs), and secretion of proinflammatory cytokines. The interaction of RA FLS cells with immune and non-immune cells leads to stimulation and activation of effector immune cells. Pathological role of RA FLS cells has been reported for many years, while molecular and cellular mechanisms are not completely understood yet. In this review, we tried to summarize the latest findings about the role of FLS cells in ELS formation, joint destruction, interactions with immune and non-immune cells, as well as potential therapeutic options in rheumatoid arthritis (RA) treatment. Our study revealed data about interactions between RA FLS and immune/non-immune cells as well as the role of RA FLS cells in joint damage, ELS formation, and neoangiogenesis, which provide useful information for developing new approaches for RA treatment.


Subject(s)
Arthritis, Rheumatoid/pathology , Fibroblasts/pathology , Joints/pathology , Synoviocytes/pathology , Tertiary Lymphoid Structures/pathology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Cytokines/immunology , Cytokines/metabolism , Fibroblasts/immunology , Fibroblasts/metabolism , Humans , Joints/immunology , Joints/metabolism , Synoviocytes/immunology , Synoviocytes/metabolism , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...