Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 15(2)2023 01 20.
Article in English | MEDLINE | ID: mdl-36828417

ABSTRACT

Rice is a widely consumed food worldwide; however, it can be a source of pollutants, such as potentially toxic elements (PTEs), mycotoxins, and pesticides. Sixty rice samples imported from Pakistan (PAK), India (IND), and Thailand (THAI), as well as domestic Iranian (IRN) rice, were collected from Bushehr, Iran, and investigated for the contamination of PTEs, including arsenic (As), lead (Pb), cadmium (Cd), and nickel (Ni); pesticides, including chlorpyrifos, trichlorfon, diazinon, fenitrothion, and chlorothalonil; mycotoxins, such as aflatoxin B1 (AFB1), zearalenone (ZEN), ochratoxin A (OTA), and deoxynivalenol (DON); and molds. Estimated daily intake (EDI) and hazard quotient (HQ) of pollutants and hazard index (HI) and incremental lifetime cancer risk (ILCR) of rice types for the Iranian adult population were calculated. The content of PTEs in Iranian rice was not higher than Iran's national standard limits. In contrast, other types of rice (imported) had at least one PTE above the permissible level. OTA content was below the detection limit, and all other mycotoxins were within the allowable range in all rice types. Thai rice was the only group without pesticides. The HI order of rice types was as follows: HIPAK = 2.1 > HIIND = 1.86 > HIIRN = 1.01 > HITHAI = 0.98. As was the biggest contributor to the HI of Iranian and Thai rice, and diazinon in the HI of Pakistani and Indian rice. The calculation of ILCR confirmed that the concentrations of Ni and Pb in Pakistani and Ni and As in Indian, Thai, and Iranian rice were not acceptable in terms of lifetime carcinogenic health risks.


Subject(s)
Arsenic , Environmental Pollutants , Metals, Heavy , Mycotoxins , Pesticides , Mycotoxins/analysis , Pesticides/analysis , Iran , Diazinon/analysis , Lead/analysis , Arsenic/analysis , Risk Assessment , Environmental Pollutants/analysis , Food Contamination/analysis , Metals, Heavy/analysis , Environmental Monitoring
2.
Environ Sci Pollut Res Int ; 29(46): 69462-69471, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35568787

ABSTRACT

This investigation aimed to remove phenol from real wastewater (taken from a petrochemical company) by activating peroxy-monosulfate (PMS) using catalysts extracted from pier waste sludge. The physical and chemical properties of the catalyst were evaluated by FE-SEM/EDS, XRD, FTIR, and TGA/DTG tests. The functional groups of O-H, C-H, CO32-, C-H, C-O, N-H, and C-N were identified on the catalyst surface. Also, the crystallinity of the catalyst before and after reaction with petrochemical wastewater was 103.4 nm and 55.8 nm, respectively. Operational parameters of pH (3-9), catalyst dose (0-100 mg/L), phenol concentration (50-250 mg/L), and PMS concentration (0-250 mg/L) were tested to remove phenol. The highest phenol removal rate (94%) was obtained at pH=3, catalyst dose of 80 mg/L, phenol concentration of 50 mg/L, PMS concentration of 150 mg/L, and contact time of 150 min. Phenol decomposition in petrochemical wastewater followed the first-order kinetics (k> 0.008 min-1, R2> 0.94). Changes in pH factor were very effective on phenol removal efficiency, and maximum efficiency (≈83%) was achieved in pH 3. The catalyst stability test was performed for up to five cycles, and phenol removal in the fifth cycle was reduced to 42%. Also, the energy consumption in this study was 77.69 kW h/m3. According to the results, the pier waste sludge catalyst/PMS system is a critical process for eliminating phenol from petrochemical wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Phenol/chemistry , Phenols/chemistry , Sewage , Wastewater/chemistry , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 283: 131265, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34182645

ABSTRACT

Disposal sludges from shipping docks contain elements that have the potential to catalyze the desired treatment process. The current work was designed to decompose phenol from wastewater by activation peroxymonosulfate (PMS) using a catalyst made from sea sediments (at 400 °C for 3 h). The catalyst had a crystalline form and contained metal oxides. The parameters of pH (3-9), catalyst dose (0-80 mg/L), phenol concentration (50-250 mg/L), and PMS dose (0-250 mg/L) were tested to specify the favorable phenol removal. The phenol removal of 99% in the waste sludge catalyst/PMS system was achieved at pH 5, catalyst quantity of 30 mg/L, phenol content of 50 mg/L, PMS dose of 150 mg/L, and reaction time of 150 min. From the results, it was implied that the pH factor was more important in removing phenol with the studied system than other factors. By-products and phenol decomposition pathways were also provided. The results showed that the sea sediment catalyst/PMS system is a vital alternative for removing phenol from wastewater medium.


Subject(s)
Sewage , Wastewater , Kinetics , Peroxides , Phenol , Phenols
4.
Ultrason Sonochem ; 68: 105187, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32485627

ABSTRACT

The waste sludge from shipping docks contains important elements that can be used as a catalyst after proper processing. The purpose of this study was to remove of amoxicillin (AMX) from the aquatic environment using waste sludge from shipping docks as catalyst in the presence of hydrogen peroxide/ultrasound waves. The catalyst was produced by treating waste sludge at 400 °C for 2 h. N2 adsorption, SEM, XRD, XRF, and FTIR techniques characterized the structural and physical properties of the catalyst. The BET-specific surface area of the catalyst reduced after AMX removal from 4.4 m2/g to 3.6 m2/g. To determine the optimal removal conditions, the parameters of the design of experiments were pH (5-9), contaminant concentration (5-100 mg/L), catalyst dosage (0.5-6 g/L), and concentration of hydrogen peroxide (10-100 mM). The maximum removal of AMX (98%) was obtained in the catalyst/hydrogen peroxide/ultrasound system at pH 5, catalyst dose of 4.5 g/L, H2O2 concentration of 50 mM, AMX concentration of 5 mg/L, and contact time of 60 min. The kinetics of removal of AMX from urine (k = 0.026 1/min), hospital wastewater (k = 0.021 1/min), and distilled water (k = 0.067 1/min) followed a first-order kinetic model (R2>0.91). The catalyst was reused up to 8 times and the AMX removal decreased to 45% in the last use. The byproducts and reaction pathway of AMX degradation were also investigated. The results clearly show that to achieve high pollutant removal rate the H2O2/ultrasound and catalyst/ultrasound synergy plays a key role.

5.
Environ Sci Pollut Res Int ; 27(7): 7463-7475, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31884533

ABSTRACT

The current investigation evaluates metal (loid)s biomonitoring using algae as well as the metal(loid) pollution of seawaters and sediments in the northern part along the Persian Gulf. Algae, seawater, and sediment samples were collected from four coastal areas with different land applications. The concentration of Ni, V, As, and Cd in abiotic samples (seawater and sediment) and four species of algae (Enteromorpha intestinalis, Rhizoclonium riparium, Cystoseira myrica, and Sargassum boveanum) was measured using an ICP-AES device. Concentrations of potentially toxic elements in seawater, sediments, and algae species followed the trend of "Ni˃V˃As˃Cd." The area of Asaloyeh (with the highest industrial activity) and the Dayyer area (with the lowest industrial activity) provided the highest and lowest amounts of metal(loid)s pollution, respectively. The average concentrations of V and As in four algae species significantly differed for all sampled areas. Obtaining the bio-concentration factor (BCF) > 1 for seawater and < 1 for sediment indicated that the studied algae have the ability to efficiently concentrate metal(loid)s from seawater and the limited accumulation of metals in sediments. According to the Nemerow pollution index, the order of metal(loid)s pollution for the studied areas estimated as Asaloyeh>Ganaveh>Bushehr>Dayyer. Algae species of C. myrica and E. intestinalis can often serve as suitable biological tools for monitoring seawater and sediment quality.


Subject(s)
Metals, Heavy , Phaeophyceae , Water Pollutants, Chemical , Geologic Sediments , Indian Ocean , Risk Assessment , Seawater
6.
Environ Sci Pollut Res Int ; 26(5): 4703-4716, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30565119

ABSTRACT

This study reports a new approach of alga amendment in a live mode. The Caulerpa sertularioides alga was modified with sulfur-containing materials of methionine (C5H11NO2S) and sodium sulfate (Na2SO4) to more concentrate the sulfur content of the yielded biomass (adsorbent). The simple and amended C. sertularioides alga was fully characterized with FTIR, SEM, EDX, BET, BJH, and pHzpc techniques. The copper adsorption from aqueous media was done by three adsorbents of C. sertularioides-simple (CSS), C. sertularioides-Na2SO4 (CSN), and C. sertularioides-C5H11NO2S (CSC). The parameters of pH (2-6), adsorbent dosage (2-10 g/L), and contact time (3-80 min) were optimized at 5, 5 g/L, and 60 min, respectively. According to Langmuir isotherm (the best-fitted model), the maximum adsorption capacity of CSN (98.04 mg/g) was obtained 2.4 times higher than CSC (40.73 mg/g) and 9.5 times higher than CSS (10.29 mg/g). The Cu adsorption process by the adsorbents was best-fitted pseudo-second-order kinetic model. The CSN, CSC, and CSS biomasses were successfully reused 5, 4, and 4 times, respectively. The thermodynamic study revealed that the copper adsorption process by CSN is exothermic and non-spontaneous. Finally, the suitability of adsorbents prepared from algae was tested by cleaning a simulated wastewater.


Subject(s)
Caulerpa/metabolism , Copper/isolation & purification , Sulfur/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Adsorption , Biomass , Bioreactors , Caulerpa/growth & development , Copper/chemistry , Hydrogen-Ion Concentration , Kinetics , Methionine/metabolism , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Sulfates/metabolism , Thermodynamics , Waste Disposal, Fluid/instrumentation , Water Pollutants, Chemical/chemistry , Water Purification/methods
7.
J Environ Manage ; 222: 12-20, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29800859

ABSTRACT

Leaf and bark of trees are tools for assessing the effects of the heavy metals pollution and monitoring the environmental air quality. The aim of this study was to evaluate the presence of Ni, Pb, V, and Co metals in four tree/shrub species (Conocarpus erectus, Nerium oleander, Bougainvillea spectabilis willd, and Hibiscus rosa-sinensis) in the heavily industrial zone of Asaloyeh, Iran. Two industrial zones (sites 1 and 2), two urban areas (sites 3 and 4), and two rural areas (sites 5 and 6) in the Asaloyeh industrial zone and an uncontaminated area as a control were selected. Sampling from leaf and bark of trees was carried out in spring 2016. The metals content in the washed and unwashed leaf and bark was investigated. The results showed that four studied metals in N. oleander, C. erectus, and B. spectabilis willd in all case sites were significantly higher than that of in the control site (p < 0.05). The highest concentration of metals was found in sites 3, 4, and 6; this was due to dispersion of the pollutants from industrial environments by dominant winds. The highest comprehensive bio-concentration index (CBCI) was found in leaf (0.37) and bark (0.12) of N. oleander. The maximum metal accumulation index (MAI) in the samples was found in leaf of N. oleander (1.58) and in bark of H. rosa-sinensis (1.95). The maximum bio-concentration factor (BCF) was seen for cobalt metal in the N. oleander leaf (0.89). The nickel concentration in washed-leaf samples of C. erectus was measured to be 49.64% of unwashed one. In general, the N. oleander and C. erectus species were found to have the highest absorption rate from the atmosphere and soil than other studied species, and are very suitable tools for managing air pollution in highly industrialized areas.


Subject(s)
Metals, Heavy/analysis , Trees , Air Pollutants , Environmental Monitoring , Environmental Pollution , Industry , Iran , Soil Pollutants
8.
Data Brief ; 8: 415-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27331122

ABSTRACT

This data article reports the relationship between of the bromide ion concentration and the formation potential of disinfectant byproducts (DBPs) including, trihalomethanes (THMs), haloacetic acids (HAAs), and haloacetonitriles (HANs) upon chlorination and monochloramination of the raw water of Karoon River water in Iran. Water samples were collected at an intake of a drinking water treatment plant during July 2014. All tests were performed in triplicate (n=3) and the mean of three measurements reported herein. The data of the formation potential of DBPs was determined under different bromide ions content. The data show the relationship between bromide concentration and DBPs formation that will be useful in the future management, operation and design of water treatment plants.

9.
MethodsX ; 2: 278-82, 2015.
Article in English | MEDLINE | ID: mdl-26150999

ABSTRACT

Several chemicals have been applied in the process of coagulant extraction from herbal seeds, and the best extraction has been obtained in the presence of KCl or NaNO3[1-3], and NaCl [4]. However, the main challenge posed to these methods of coagulant extraction is their relatively low efficiency for water treatment purposes and the formation of dissolved organic matter during the treatment process. In these methods the salts, which have a one-valance metal (Na(+) and K(+)), are deposited in the internal structure and the pore of the coagulant, and may be useful for the coagulation/flocculation process. In this research, we found that modified methods produced more dense protein. Therefore, the modified procedure was better than the older one for removal of turbidity and harness from the contaminated water. Here we describe a method where: •According to the Hardy-Schulze rule, we applied the Fe(3+) ions instead of Na(+) and K(+) for the extraction of protein from Plantago ovata seeds.•The method was narrowed to extract protein by ethanol (defatting) and ammonium acetate and CM-Sepharose (protein extraction).•Two consecutive elutriations of crude extract was directly performed using 0.025-M FeCl3 and 0.05-M FeCl3 according to the basis of the ion-exchange processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...