Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Health Sci Eng ; 20(1): 375-384, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35669801

ABSTRACT

This study aims to investigate the effect of using Al2O3 nanoparticles (NPs) in membrane structure on the operation condition of the membrane bioreactor. To this end, alumina NPs as the high hydrophilic agents with an approximate size of 40 nm and a concentration of 0-3 wt.% were placed within the PAN polymeric membrane matrix structure with high hydrophilicity and high mechanical resistance over the others via the phase inversion method. Characterization of synthesized nanocomposite membranes was carried out by SEM analysis. In the presence of the alumina NPs, the porosity of the membranes improved. The water contact angle measurement confirmed the superior hydrophilicity of mixed PAN membranes compared to the pure polymeric membranes. The best nanocomposite membrane with better antifouling properties was selected to evaluate the MBR's performance in wastewater treatment and assessed in terms of the resistance, flux recovery, and COD removal rates. The result of a comparison with pure membrane showed that by increasing the Al2O3 amount up to 2wt.%, irreversible fouling resistance mitigated as much as 50%. Moreover, the flux recovery ratio was increased by 15%, and the COD removal rate was also raised as large as 16%. Our investigation illustrated that the presence of alumina NPs has improved the MBR performance and decreased the irreversible fouling resistance of the membrane.

2.
J Environ Health Sci Eng ; 19(1): 1015-1023, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34150289

ABSTRACT

The aim of this study is to synthesize a magnetic nanocomposite membrane using iron oxide and alumina nanoparticles and employing it in magnetic membrane bioreactors (MBRs) for oily wastewater treatment. Al2O3 and Fe3O4 nanoparticles with approximate sizes of 20 and 30 nm respectively, were settled into a polysulfone (PSf) membrane matrix via magnetic casting method. The concentration of alumina and iron oxide nanoparticles were 0-0.25 wt% and 0.03 wt%, respectively. Compared with the blank membrane, an increase in the concentration of Fe3O4 up to 0.2 wt%, led to the flux as much as 70% and mitigated total resistance by 70%. The presence of the magnetic field around the bioreactor increased the flux significantly and reduced the cake resistance by 93%. Moreover, by applying the static magnetic field to MBR, the Chemical Oxygen Demand (COD) removal rate was increased to 93%, while in the MBR without the magnetic field the COD removal rate was 80%. Our investigation illustrated that the magnetic casting is an effective method to improve the flux and mitigate the fouling of the magnetic nanocomposite membrane. The output of this research indicates that the magnetic casting method enhance the magnetic MBRs performance for wastewater treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...