Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 556, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730092

ABSTRACT

Lipid nanoparticles (LNPs) have emerged as promising platforms for efficient in vivo mRNA delivery owing to advancements in ionizable lipids. However, maintaining the thermostability of mRNA/LNP systems remains challenging. While the importance of only a small amount of lipid impurities on mRNA inactivation is clear, a fundamental solution has not yet been proposed. In this study, we investigate an approach to limit the generation of aldehyde impurities that react with mRNA nucleosides through the chemical engineering of lipids. We demonstrated that piperidine-based lipids improve the long-term storage stability of mRNA/LNPs at refrigeration temperature as a liquid formulation. High-performance liquid chromatography analysis and additional lipid synthesis revealed that amine moieties of ionizable lipids play a vital role in limiting reactive aldehyde generation, mRNA-lipid adduct formation, and loss of mRNA function during mRNA/LNP storage. These findings highlight the importance of lipid design and help enhance the shelf-life of mRNA/LNP systems.


Subject(s)
Lipids , Nanoparticles , Piperidines , RNA Stability , RNA, Messenger , Nanoparticles/chemistry , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lipids/chemistry , Piperidines/chemistry , Humans , Temperature , Liposomes
2.
J Control Release ; 322: 217-226, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32145269

ABSTRACT

Lipid nanoparticles (LNPs) are one of the more promising technologies for efficiently delivering nucleic acids in vivo. Hepatocytes are the primary target cells of LNPs that are delivered via the apolipoprotein E (ApoE)-low density lipoprotein receptor (LDLR) pathway, an endogenous targeting pathway. This robust targeting mechanism results in the specific and efficient delivery of nucleic acids to hepatocytes. Trivalent N-acetyl-D-galactosamine (GalNAc) is known to be a high-affinity exogenous ligand against the asialoglycoprotein receptor (ASGPR), which is highly expressed on hepatocytes. In this study, we report that the kinetics of the hepatic uptake process between the two types of targeting pathways are different. Rapid blood clearance, accumulation to the space of Disse and a subsequent slow cellular uptake was observed in the case of the endogenous ApoE-LDLR pathway. On the other hand, both blood clearance and cellular uptake were more gradual in the case of the exogenous GalNAc-ASGPR pathway. Interactions between ApoE-bound LNPs and hepatic heparan sulfate proteoglycans (HSPGs) were involved in the rapid blood clearance and accumulation to the space of Disse in the case of the endogenous pathway. The findings presented here contribute to a more precise understanding of the mechanism of hepatic uptake and to the rational design of hepatocyte-targeting nanoparticles.


Subject(s)
Galactosamine , Nanoparticles , Acetylgalactosamine , Apolipoproteins E , Asialoglycoprotein Receptor/metabolism , Hepatocytes/metabolism , Kinetics , Lipids , Receptors, LDL
3.
Acta Biomater ; 102: 341-350, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31733331

ABSTRACT

Despite the fact that small-sized lipid nanoparticles (LNPs) are important for improved tissue penetration and efficient drug delivery, their poor stability and intracellular trafficking significantly hinders their use as potent small-sized LNPs. It has been reported that both the diffusion of lipid components from LNPs and the adsorption of proteins on the surface of LNPs are responsible for their decreased potency. To overcome this issue, we focused on the chemical structure of hydrophobic scaffolds of pH-sensitive cationic lipids with various lengths and shapes. LNPs composed of a pH-sensitive cationic lipid with long, linear scaffolds induced gene silencing in a dose-dependent manner, while LNPs with a classical scaffold length (C18) failed. Replacing the helper lipid from cholesterol to egg sphingomyelin (ESM) resulted in the formation of smaller LNPs with a diameter of ~22 nm and enhanced gene silencing activity. Most of the ESMs were located in the outer layer and functioned to stabilize the LNPs. Long, linear scaffolds contributed to immiscibility with phosphocholine-containing lipids including ESM. This contribution was dependent on the scaffold length of pH-sensitive cationic lipids. Although phosphocholine-containing lipids usually inhibit membrane fusion-mediated endosomal escape, long, linear scaffolds contributed to avoiding the inhibitory effect and to enhance the potency of the LNPs. These findings provide useful information needed for the rational design of pH-sensitive cationic lipid structures and the selection of appropriate helper lipids and will facilitate the development of highly potent small-sized LNPs. STATEMENT OF SIGNIFICANCE: Despite the fact that small-sized lipid nanoparticles (LNPs) are important for improved tissue penetration and efficient drug delivery, the size reduction-associated decrease in the stability and intracellular trafficking significantly hinders the development of potent small-sized LNPs. Our limited understanding of the mechanism underlying the reduced potency has also hindered the development of more potent small-sized LNPs. The findings of the present study indicate that long and linear hydrophobic scaffolds of pH-sensitive cationic lipids could overcome the loss of efficiency for nucleic acid delivery. In addition, the long hydrophobic scaffolds led to immiscibility with neutral phospholipids, resulting in efficient endosomal escape. These findings provide useful information needed for the rational design of pH-sensitive cationic lipid structures and will facilitate the development of highly potent small-sized LNPs.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , RNA, Small Interfering/pharmacology , Gene Silencing/drug effects , HeLa Cells , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Luciferases, Firefly/genetics , Molecular Structure
4.
J Control Release ; 295: 140-152, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30610950

ABSTRACT

Lipid nanoparticles (LNPs) are one of the more promising technologies for efficiently delivering short interfering RNA (siRNA) in vivo. A pH-sensitive cationic lipid that facilitates the targeting of hepatocytes and endosomal escape, strongly influences the availability of siRNA, thus making it a key material for efficient siRNA delivery. A systematic knowledge regarding lipid structure-activity relationships would greatly facilitate the development of sophisticated pH-sensitive cationic lipids for use in siRNA-based therapeutics. The systemic derivatization of a hydrophilic head group and hydrophobic tails of YSK12-C4, a pH-sensitive cationic lipid that was developed in our laboratory, revealed that hydrophilic head significantly affected the apparent pKa of the final product, a key factor in both intrahepatic distribution and endosomal escape. The clogP value of a hydrophilic head group was found to be associated with the apparent pKa of the product. In contrast, the hydrophobic tail structure strongly affected intrahepatic distribution without depending on apparent pKa. A structure-activity relationship study enabled the selection of an adequate combination of a hydrophilic head group and hydrophobic tails and permitted a potent LNP composed of a pH-sensitive cationic lipid CL4H6 (CL4H6-LNPs) to be developed that showed efficient gene silencing activity (50% effective dose: 0.0025 mg/kg), biodegradability and was tolerated. In vivo experiments revealed that the CL4H6-LNPs showed a superior efficiency for endosomal escape, cytosolic release and the RNA-induced silencing for the complex-loading of siRNAs compared to the previously developed LNPs.


Subject(s)
Lipids/chemistry , Nanoparticles/chemistry , RNA Interference , RNA, Small Interfering/administration & dosage , Animals , Cations/chemistry , Drug Carriers/chemistry , HeLa Cells , Humans , Hydrogen-Ion Concentration , Liver/metabolism , Mice, Inbred BALB C , Mice, Inbred ICR , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacokinetics , Spleen/metabolism , Structure-Activity Relationship
5.
J Control Release ; 262: 239-246, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28774839

ABSTRACT

Lipid nanoparticles (LNPs) are one of the promising technologies for the in vivo delivery of short interfering RNA (siRNA). Modifying LNPs with polyethyleneglycol (PEG) is widely used to inhibit non-specific interactions with serum components in the blood stream, and is a useful strategy for maximizing the efficiency of active targeting. However, it is a widely accepted fact that PEGylation of the LNP surface strongly inhibits fusion between LNPs and endosomal membranes, resulting in poor cytosolic siRNA delivery, a process that is referred to as the 'PEG-dilemma'. In the present study, in an attempt to overcome this problem, siRNA-loaded LNPs were modified with PEG through maleic anhydride, a pH-labile linkage. The in vitro, suppression of cationic charge, stealth function at physiological pH up to 1h and the rapid desorption of PEG and restoration of fusogenic activity under slightly acidic conditions (within only 2min) were achieved by PEG modification of the LNPs through maleic anhydride. In vivo, PEG modification through maleic anhydride resulted in a dramatic improvement in the targeting capability of the active targeting of ligand (N-acetyl-d-galactosamine)-modified LNPs to hepatocytes, with an approximately 14-fold increase in gene silencing activity in factor 7 model mice. Taken together, the maleic anhydride-mediated pH-labile PEGylation of the active targeting LNPs is a useful strategy for achieving the specific and efficient delivery of siRNAs in vivo.


Subject(s)
Hepatocytes/metabolism , Nanoparticles/administration & dosage , Polyethylene Glycols/administration & dosage , RNA, Small Interfering/administration & dosage , Acetylgalactosamine/chemistry , Animals , Female , Gene Silencing , HeLa Cells , Humans , Hydrogen-Ion Concentration , Lipids/administration & dosage , Lipids/chemistry , Maleic Anhydrides/chemistry , Mice, Inbred ICR , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , RNA, Small Interfering/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...