Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 46(4): 1176-1194, 2023 04.
Article in English | MEDLINE | ID: mdl-36111882

ABSTRACT

The long-term dynamics of the transcriptome under natural field conditions remain unclear. We conducted comprehensive gene expression analyses of rice leaves and roots grown under natural field conditions for a long period, from the tillering stage to the ripening stage. In this experiment, changes in the transcriptome were captured in relation to microclimatic parameters, particularly potential evaporation (Ep), which is a multiple meteorological factor and acts as an indicator of transpirational demand. The results indicated  that many genes were regulated by changes in temperature and Ep in both leaves and roots. Furthermore, the correlation between gene expression and meteorological factors differed significantly between the vegetative and reproductive stages. Since Ep triggers transpiration, we analyzed aquaporin gene expression, which is responsible for water transport, and found that many aquaporin genes in leaves were positively correlated with Ep throughout the growth period, whereas in roots, two plasma membrane intrinsic aquaporins, PIP2;4 and PIP2;5 were strongly correlated with Ep during reproductive growth. Other genes closely related to productivity, such as those involved in nutrient absorption and photosynthesis, exhibited different responses to meteorological factors at different growth stages. The stage-dependent shift in the microclimate response provides an important perspective on crop physiology in light of climate change.


Subject(s)
Aquaporins , Oryza , Oryza/physiology , Transcriptome , Microclimate , Aquaporins/metabolism , Plant Leaves/metabolism , Water/metabolism , Plant Roots/metabolism
2.
Plant Cell Environ ; 45(8): 2410-2427, 2022 08.
Article in English | MEDLINE | ID: mdl-35610174

ABSTRACT

The differences between plants grown in field and in controlled environments have long been recognized. However, few studies have addressed the underlying molecular mechanisms. To evaluate plant responses to fluctuating environments using laboratory equipment, we developed SmartGC, a high-performance growth chamber that reproduces the fluctuating irradiance, temperature and humidity of field environments. We analysed massive transcriptome data of rice plants grown under field and SmartGC conditions to clarify the differences in plant responses to field and controlled environments. Rice transcriptome dynamics in SmartGC mimicked those in the field, particularly during the morning and evening but those in conventional growth chamber conditions did not. Further analysis revealed that fluctuation of irradiance affects transcriptome dynamics in the morning and evening, while fluctuation of temperature affects transcriptome dynamics only in the morning. We found upregulation of genes related to biotic and abiotic stress, and their expression was affected by environmental factors that cannot be mimicked by SmartGC. Our results reveal fillable and unfillable gaps in the transcriptomes of rice grown in field and controlled environments and can accelerate the understanding of plant responses to field environments for both basic biology and agricultural applications.


Subject(s)
Oryza , Transcriptome , Gene Expression Regulation, Plant , Oryza/metabolism , Plants/genetics , Stress, Physiological/genetics , Temperature , Transcriptome/genetics
3.
Plant Cell Physiol ; 62(9): 1436-1445, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34131748

ABSTRACT

How genetic variations affect gene expression dynamics of field-grown plants remains unclear. Expression quantitative trait loci (eQTL) analysis is frequently used to find genomic regions underlying gene expression polymorphisms. This approach requires transcriptome data for the complete set of the QTL mapping population under the given conditions. Therefore, only a limited range of environmental conditions is covered by a conventional eQTL analysis. We sampled sparse time series of field-grown rice from chromosome segment substitution lines (CSSLs) and conducted RNA sequencing (RNA-Seq). Then, by using statistical analysis integrating meteorological data and the RNA-Seq data, we identified 1,675 eQTLs leading to polymorphisms in expression dynamics under field conditions. A genomic region on chromosome 11 influences the expression of several defense-related genes in a time-of-day- and scaled-age-dependent manner. This includes the eQTLs that possibly influence the time-of-day- and scaled-age-dependent differences in the innate immunity between Koshihikari and Takanari. Based on the eQTL and meteorological data, we successfully predicted gene expression under environments different from training environments and in rice cultivars with more complex genotypes than the CSSLs. Our novel approach of eQTL identification facilitated the understanding of the genetic architecture of expression dynamics under field conditions, which is difficult to assess by conventional eQTL studies. The prediction of expression based on eQTLs and environmental information could contribute to the understanding of plant traits under diverse field conditions.


Subject(s)
Genome, Plant , Oryza/genetics , Transcriptome , Genomics , Oryza/metabolism
4.
Funct Plant Biol ; 48(10): 984-993, 2021 09.
Article in English | MEDLINE | ID: mdl-34112311

ABSTRACT

At low temperatures (18°C), seedlings of an indica rice (Oryza sativa L.) cultivar Kasalath showed symptoms of chlorosis, although the leaves of a japonica cultivar Arroz da Terra remained green. In this study, transcripts related to the chlorophyll content of rice seedlings grown at 18°C were investigated using RNA-sequencing (RNA-Seq) data for F2 crosses between cultivars Arroz da Terra and Kasalath, as well as their parental cultivars. Differential expression analysis revealed that gene ontology terms related to 'photosynthesis' were significantly enriched in lowly expressed genes at 18°C than at 25°C in Kasalath. However, the gene ontology terms related to 'response to stress' were significantly enriched in highly expressed genes at 18°C than at 25°C in Kasalath. When the F2 plants were grown at 18°C, their chlorophyll contents varied. Transcripts with expression levels related to chlorophyll content were statistically selected using RNA-Seq data from 21 F2 plants. In regression models, frequently selected genes included four photosynthetic and two stress-responsive genes. The expression values of four photosynthetic and two stress-responsive genes in high-frequency selected genes were significantly correlated with chlorophyll content not only in plants analysed using RNA-Seq but also in 95 F2 plants.


Subject(s)
Oryza , Chlorophyll , Oryza/genetics , Seedlings/genetics , Sequence Analysis, RNA , Temperature
5.
Funct Plant Biol ; 46(8): 777-785, 2019 07.
Article in English | MEDLINE | ID: mdl-31043226

ABSTRACT

OsINV2, a rice vacuolar invertase isoform, was assessed for its functional roles in plant growth and development with key focus on its agronomic traits such as grain weight, grain filling percentage, grain number and dry weights at various stages until harvest. Lack of differences between the wild-type and the mutants with respect to any of the aforementioned traits tested revealed a possibility of functional compensation of OsINV2 in the mutants conceivably by its isoform. This was confirmed by OsINV2 promoter::GUS studies, where its spatial and temporal expression in the panicle elongation stages showed that although OsINV2 expression was observed from the stage with young panicles ~1 cm in length to the flag leaf stage, significant differences with respect to panicle and spikelet phenotypes between the wild-type and the mutant were not present. However, complement lines displaying an overexpression phenotype of OsINV2 possessed a higher stem non-structural carbohydrate content under both monoculm and normal tillering conditions. A trade-off between the spikelet number and grain weight in the complement lines grown under monoculm conditions was also observed, pointing towards the necessity of OsINV2 regulation for grain yield-related traits.


Subject(s)
Oryza , Edible Grain , Phenotype , Protein Isoforms , beta-Fructofuranosidase
6.
Rice (N Y) ; 11(1): 6, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29344835

ABSTRACT

BACKGROUND: Rice is a major crop feeding the majority of the global population, and increasing its sink strength is one of the modes to alleviate the declining availability of food for the rapidly growing world population. We demonstrate a role for an important rice vacuolar invertase isoform, OsINV3, in sink strength determination. RESULTS: OsINV3 mutants showed shorter panicles with lighter and smaller grains, owing to a smaller cell size on the outer and inner surfaces of the palea and lemma as observed by scanning electron microscopy. Further, strong promoter::GUS expression was observed in the palea, lemma and the rachis branches in the young elongating panicles, which supported the role of OsINV3 in cell expansion and thus, in spikelet size and panicle length determination. Size of the spikelet was found to directly influence the grain weight, which was confirmed by the lack of differences in weights of hulled grain for differently segregated alleles in the heterozygous lines. Assessment of field grown mutants not only revealed a drastic reduction in the percentage of ripened grain, 1000-grain weight and final yield, but also significantly reduced partitioning of assimilates to the panicles, whereby the total dry weight remained unaffected. Determination of the non-structural carbohydrate contents revealed a lower hexose-to-sucrose ratio in the panicles of the mutants from panicle initiation to 10 days after heading, a stage that identifies as the critical pre-storage phase of grain filling, whereas the starch contents were not affected. In addition, strong promoter::GUS expression was observed in the dorsal end of ovary during the pre-storage phase until 6 days after flowering, highlighting a function for OsINV3 in monitoring the initial grain filling stage. CONCLUSIONS: OsINV3 was found to regulate spikelet size by playing a key role in cell expansion, driving the movement of assimilates for grain filling by modulating the hexose-to-sucrose ratio, contributing in grain weight determination and thus, the grain yield.

7.
Plant Sci ; 253: 40-49, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27968995

ABSTRACT

Sucrose phosphate synthase (SPS) has been shown to mediate sucrose/starch ratio in plant leaves through studies of 'starch leaf' species that mainly accumulate starch in their leaves. However, the contribution of SPS to sucrose/starch ratio in rice leaves, which mainly accumulate sucrose (i.e., 'sugar leaf'), has not been confirmed due to inconsistencies in the results of previous studies. In this study, we analyzed mutant lines with reduced SPS activity, which were generated using Tos17 insertion, RNAi, and the CRISPR/Cas9 system. The knockdown and knockout mutants of OsSPS1 showed a 29-46% reduction in SPS activity in the leaves, but the carbohydrate content in the leaves and plant growth were not significantly different from those of wild-type plants. In a double knockout mutant of OsSPS1 and OsSPS11 (sps1/sps11), an 84% reduction in leaf SPS activity resulted in higher starch accumulation in the leaves than in the wild-type leaves. However, the sps1/sps11 plants grew normally, which is in contrast to the inhibited growth of SPS mutants of Arabidopsis thaliana, a typical starch leaf plant. These results suggest that SPS has a smaller effect on the sucrose/starch ratio in leaves and growth of rice than on starch leaf species.


Subject(s)
Carbohydrate Metabolism , Glucosyltransferases/metabolism , Oryza/enzymology , Plant Development , Base Sequence , Clustered Regularly Interspaced Short Palindromic Repeats , Molecular Sequence Data , Oryza/genetics , Oryza/growth & development , RNA Interference
8.
Plant Sci ; 225: 102-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25017165

ABSTRACT

The molecular function of an isoform of sucrose phosphate synthase (SPS) in rice, OsSPS1, was investigated using gene-disruption mutant lines generated by retrotransposon insertion. The progeny of the heterozygote of disrupted OsSPS1 (SPS1(+/-)) segregated into SPS1(+/+), SPS1(+/-), and SPS1(-/-) at a ratio of 1:1:0. This distorted segregation ratio, together with the expression of OsSPS1 in the developing pollen revealed by quantitative RT-PCR analysis and promoter-beta-glucuronidase (GUS) fusion assay, suggested that the disruption of OsSPS1 results in sterile pollen. This hypothesis was reinforced by reciprocal crosses of SPS1(+/-) plants with wild-type plants in which the disrupted OsSPS1 was not paternally transmitted to the progeny. While the pollen grains of SPS(+/-) plants normally accumulated starch during their development, pollen germination on the artificial media was reduced to half of that observed in the wild-type control. Overall, our data suggests that sucrose synthesis via OsSPS1 is essential in pollen germination in rice.


Subject(s)
Genes, Plant , Glucosyltransferases/genetics , Mutation , Oryza/genetics , Plant Proteins/genetics , Pollen/metabolism , Sucrose/metabolism , Crosses, Genetic , Glucosyltransferases/metabolism , Heterozygote , Oryza/enzymology , Oryza/metabolism , Plant Proteins/metabolism , Retroelements , Starch/metabolism
9.
Funct Plant Biol ; 42(1): 31-41, 2014 Feb.
Article in English | MEDLINE | ID: mdl-32480651

ABSTRACT

In rice (Oryza sativa L.), tiller angle - defined as the angle between the main culm and its side tillers - is one of the important factors involved in light use efficiency. To clarify the relationship between tiller angle, gravitropism and stem-starch accumulation, we investigated the shoot gravitropic response of a low stem-starch rice mutant which lacks a large subunit of ADP-glucose pyrophosphorylase (AGP), called OsAGPL1 and exhibits relatively spread tiller angle. The insensitive gravitropic response exhibited by the mutant led us to the conclusion that insensitivity of gravitropism caused by stem-starch reduction splayed the tiller angle. Furthermore, since another AGP gene called OsAGPL3 was expressed at considerable levels in graviresponding sites, we generated a double mutant lacking both OsAGPL1 and OsAGPL3. The double mutant exhibited still lower stem-starch content, less sensitive gravitropic response and greater tiller angle spread than the single mutants. This indicated that the expansion of the tiller angle caused by the reduction in starch level was intense according to the extent of the reduction. We found there were no significant differences between the double mutant and wild-type plants in terms of dry matter production. These results provided new insight into the importance of stem-starch accumulation and ideal plant architecture.

10.
Front Plant Sci ; 4: 147, 2013.
Article in English | MEDLINE | ID: mdl-23750161

ABSTRACT

To identify potential regulators of photoassimilate partitioning, we screened for rice mutant plants that accumulate high levels of starch in the leaf blades, and a mutant line leaf starch excess 1 (LSE1) was obtained and characterized. The starch content in the leaf blades of LSE1 was more than 10-fold higher than that in wild-type plants throughout the day, while the sucrose content was unaffected. The gene responsible for the LSE1 phenotype was identified by gene mapping to be a gene encoding α-glucan water dikinase, OsGWD1 (Os06g0498400), and a 3.4-kb deletion of the gene was found in the mutant plant. Despite the hyperaccumulation of starch in their leaf blades, LSE1 plants exhibited no significant change in vegetative growth, presenting a clear contrast to the reported mutants of Arabidopsis thaliana and Lotus japonicus in which disruption of the genes for α-glucan water dikinase leads to marked inhibition of vegetative growth. In reproductive growth, however, LSE1 exhibited fewer panicles per plant, lower percentage of ripened grains and smaller grains; consequently, the grain yield was lower in LSE1 plants than in wild-type plants by 20~40%. Collectively, although α-glucan water dikinase was suggested to have universal importance in leaf starch degradation in higher plants, the physiological priority of leaf starch in photoassimilate allocation may vary among plant species.

11.
Funct Plant Biol ; 40(11): 1137-1146, 2013 Nov.
Article in English | MEDLINE | ID: mdl-32481181

ABSTRACT

Starch accumulated in rice (Oryza sativa L.) stems before heading as nonstructural carbohydrates (NSCs) is reported to be important for improving and stabilising grain yield. To evaluate the importance of stem starch, we investigated a retrotransposon (Tos17) insertion rice mutant lacking a gene encoding a large subunit of ADP-glucose pyrophosphorylase (AGP) called OsAGPL1 or OsAPL3. The AGP activity and starch contents of the mutant were drastically reduced in the stem (i.e. leaf sheath and culm) but not in the leaf blade or endosperm. This starch reduction in the leaf sheaths of the mutant was complemented by the introduction of wild-type OsAGPL1. These results strongly suggest that OsAGPL1 plays a principal role in stem starch accumulation. Field experimentations spanning 2 years revealed that the mutant plants were shorter than the wild-type plants. Moreover, the tiller number and angle were larger in the mutant plants than the wild-type plants, but the dry weight at heading stage was not different. The grain yield was slightly lower in control plots without shading treatment. However, this difference increased substantially with shading. Therefore, stem starch is indispensable for normal ripening under low irradiance conditions and probably contributes to the maintenance of appropriate plant architecture.

SELECTION OF CITATIONS
SEARCH DETAIL
...