Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37514379

ABSTRACT

Photostabilization of functional polymeric materials is important for protection against aging and ultraviolet (UV) irradiation. There is, therefore, the impetus to modify polymers to increase their resistance to photodegradation and photooxidation on extended exposure to UV light in harsh conditions. Various polymeric additives have been designed and synthesized in recent years, and their potential as photostabilizers has been explored. Reported here is the effect of pendant functionalization of poly(methyl methacrylate) (PMMA) through organometallic moiety incorporation into the polymer's backbone. The reaction of PMMA with ethylenediamine leads to the formation of an amino residue that can react with salicylaldehyde to produce the corresponding Schiff base. Adding metal chlorides (zinc, copper, nickel, and cobalt) led to the formation of organometallic residues on the polymeric chains. Thin films of modified and unmodified PMMA were produced and irradiated with UV light to determine the effect of pendant modification on photostability. The photostabilization of PMMA was assessed using a range of methods, including infrared spectroscopy, weight loss, decomposition rate constant, and surface morphology. The modified PMMA incorporating organic Schiff base metal complexes showed less photodecomposition than the unmodified polymer or one containing the Schiff base only. Thus, the metals significantly reduced the photodegradation of polymeric materials. The polymer containing the Schiff base-cobalt unit showed the least damage in the PMMA surface due to photoirradiation, followed by those containing nickel, zinc, and copper, in that order.

2.
Polymers (Basel) ; 14(14)2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35890588

ABSTRACT

Polyvinyl chloride is used in the manufacturing of a wide range of products, but it is susceptible to degradation if exposed to high temperatures and sunlight. There is therefore a need to continuously explore the design, synthesis, and application of new and improved additives to reduce the photodegradation of polyvinyl chloride in harsh environments and for outdoor applications. This research investigates the use of new norfloxacin-tin complexes as additives to inhibit the photodegradation of polyvinyl chloride to make it last longer. Reactions between norfloxacin and substituted tin chlorides, in different molar ratios and in methanol under reflux conditions, gave the corresponding organotin complexes in high yields. The chemical structures of the synthesized complexes were established, and their effect on the photodegradation of polyvinyl chloride due to ultraviolet-visible irradiation was investigated. Norfloxacin-tin complexes were added to polyvinyl chloride at very low concentrations and homogenous thin films were made. The films were irradiated for a period of up to 300 h, and the damage that occurred was assessed using infrared spectroscopy, polymeric materials weight loss, depression in molecular weight, and surface inspection. The degree of photodegradation in the polymeric materials was much less in the blends containing norfloxacin-tin complexes compared to the case where no additives were used. The use of the additives leads to a reduction in photodegradation (e.g., a reduction in the formation of short-chain polymeric fragments, weight loss, average molecular weight depletion, and roughness factor) of irradiated polyvinyl chloride. The norfloxacin-tin complexes contain aromatic moieties (aryl and heterocycle), heteroatoms (nitrogen, oxygen, and fluorine), and an acidic center (tin atom). Therefore, they act as efficient photostabilizers by absorbing the ultraviolet radiation and scavenging hydrogen chloride, peroxides, and radical species, thereby slowing the photodegradation of polyvinyl chloride.

3.
Polymers (Basel) ; 13(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34833244

ABSTRACT

Poly(vinyl chloride) suffers from degradation through oxidation and decomposition when exposed to radiation and high temperatures. Stabilizers are added to polymeric materials to inhibit their degradation and enable their use for a longer duration in harsh environments. The design of new additives to stabilize poly(vinyl chloride) is therefore desirable. The current study includes the synthesis of new tin complexes of 4-methoxybenzoic acid and investigates their potential as photostabilizers for poly(vinyl chloride). The reaction of 4-methoxybenzoic acid and substituted tin chlorides gave the corresponding substituted tin complexes in good yields. The structures of the complexes were confirmed using analytical and spectroscopic methods. Poly(vinyl chloride) was doped with a small quantity (0.5%) of the tin complexes and homogenous thin films were made. The effects of the additives on the stability of the polymeric material on irradiation with ultraviolet light were assessed using different methods. Weight loss, production of small polymeric fragments, and drops in molecular weight were lower in the presence of the additives. The surface of poly(vinyl chloride), after irradiation, showed less damage in the films containing additives. The additives, in particular those containing aromatic (phenyl groups) substitutes, inhibited the photodegradation of polymeric films significantly. Such additives act as efficient ultraviolet absorbers, peroxide quenchers, and hydrogen chloride scavengers.

4.
Molecules ; 26(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198519

ABSTRACT

Poly(vinyl chloride) degrades when exposed to ultraviolet light for long durations; therefore, the photostability of polymeric materials should be enhanced through the application of additives. New organotin complexes containing 4-aminonaphthalene-1-sulfonic acid were synthesized and their role as poly(vinyl chloride) photostabilizers were evaluated. The reaction of 4-amino-3-hydroxynaphthalene-1-sulfonic acid and appropriate di- or trisubstituted tin chloride (triphenyltin chloride, tributyltin chloride, dibutyltin dichloride, and dimethyltin dichloride) in methanol under reflux gave the corresponding tin-naphthalene complexes with yields of 75%-95%. Elemental analyses and spectroscopic techniques including infrared and nuclear magnetic resonance (proton and tin) were used to confirm their structures. The tin complexes were added to poly(vinyl chloride) to produce thin films that irradiated with ultraviolet light. Various parameters were assessed, such as the weight loss, formation of specific functional groups, changes in the surface due to photoirradiation, and rate constant of photodegradation, to test the role played by the organotin complexes to reduce photodegradation in polymeric films. The results proved that organotin complexes acted as photostabilizers in these circumstances. The weight loss, formation of fragments containing specific functional groups, and undesirable changes in the surface of polymeric films were limited in the presence of organotin complexes. Organotin complexes containing three phenyl groups showed the most desirable stabilization effect. These act as efficient primary and secondary photostabilizers, and as decomposers for peroxides. In addition, such an additive inhibits the dehydrochlorination process, which is the main cause of poly(vinyl chloride) photodegradation.

5.
Molecules ; 24(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261834

ABSTRACT

As poly(vinyl chloride) (PVC) photodegrades with long-term exposure to ultraviolet radiation, it is desirable to develop methods that enhance the photostability of PVC. In this study, new aromatic-rich diorganotin(IV) complexes were tested as photostabilizers in PVC films. The diorganotin(IV) complexes were synthesized in 79-86% yields by reacting excess naproxen with tin(IV) chlorides. PVC films containing 0.5 wt % diorganotin(IV) complexes were irradiated with ultraviolet light for up to 300 h, and changes within the films were monitored using the weight loss and the formation of specific functional groups (hydroxyl, carbonyl, and polyene). In addition, changes in the surface morphologies of the films were investigated. The diorganotin(IV) complexes enhanced the photostability of PVC, as the weight loss and surface roughness were much lower in the films with additives than in the blank film. Notably, the dimethyltin(IV) complex was the most efficient photostabilizer. The polymeric film containing this complex exhibited a morphology of regularly distributed hexagonal pores, with a honeycomb-like structure-possibly due to cross-linking and interactions between the additive and the polymeric chains. Various mechanisms, including direct absorption of ultraviolet irradiation, radical or hydrogen chloride scavenging, and polymer chain coordination, could explain how the diorganotin(IV) complexes stabilize PVC against photodegradation.


Subject(s)
Naproxen/chemistry , Organotin Compounds/chemistry , Polyvinyl Chloride/chemical synthesis , Membranes, Artificial , Molecular Structure , Photolysis , Polyvinyl Chloride/chemistry , Surface Properties , Ultraviolet Rays
6.
Molecules ; 24(4)2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30813367

ABSTRACT

Five Schiff bases derived from melamine have been used as efficient additives to reduce the process of photodegradation of poly(vinyl chloride) films. The performance of Schiff bases has been investigated using various techniques. Poly(vinyl chloride) films containing Schiff bases were irradiated with ultraviolet light and any changes in their infrared spectra, weight, and the viscosity of their average molecular weight were investigated. In addition, the surface morphology of the films was inspected using a light microscope, atomic force microscopy, and a scanning electron micrograph. The additives enhanced the films resistance against irradiation and the polymeric surface was much smoother in the presence of the Schiff bases compared with the blank film. Schiff bases containing an ortho-hydroxyl group on the aryl rings showed the greatest photostabilization effect, which may possibly have been due to the direct absorption of ultraviolet light. This phenomenon seems to involve the transfer of a proton as well as several intersystem crossing processes.


Subject(s)
Polyvinyl Chloride/chemistry , Schiff Bases/chemistry , Triazines/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Molecular Structure , Photolysis , Ultraviolet Rays
7.
Heliyon ; 4(8): e00743, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30140773

ABSTRACT

A modified poly(vinyl chloride) honeycomb thin film containing a low concentration of a thiadiazole Schiff base and nickel(II) chloride was successfully fabricated using the casting process. The surface morphology of the synthesized thin film was investigated using the scanning electronic microscopy. The synthesized poly(vinyl chloride) thin film was found to have a homogeneous surface morphology with a high crystalline nature. The addition of nickel(II) chloride was discovered to be vital for the formation of the honeycomb like structure.

8.
Heliyon ; 4(12): e01013, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619957

ABSTRACT

The fabrication of tunable poly(vinyl chloride) porous films containing polyphosphate as an additive was successful. Irradiation of poly(vinyl chloride) films containing polyphosphate at a low concentration (0.5% by weight) with an ultraviolet light (λmax = 313 nm) for 300 h leads to the formation of a honeycomb like structure. The scanning electron microscopy images, at different magnification power, confirmed the production of the PVC honeycomb-like structure. The morphological images of the polymeric film showed a rough surface and a large number of regularly distributed hexagonal pores. The number of pores increased upon irradiation time and it was maximum after 300 h. The honeycomb structure formation could be due to the regular aggregation of polyphosphate among the polymeric chains, the increase in solution intrinsic viscosity and evaluation of hydrogen chloride gas through dehydrochlorination process.

9.
Polymers (Basel) ; 10(11)2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30961110

ABSTRACT

Polystyrene films containing a low concentration of three highly aromatic Schiff bases were prepared using the casting method. The polystyrene films were irradiated with ultraviolet light (300 h). The polystyrene infrared spectra, weight loss, molecular weight reduction and the surface morphology were examined upon irradiation. The Schiff bases acted as photostabilizers and reduced the photodegradation of polystyrene films to a significant level in comparison to the blank film. The images recorded of the surface of the miscible polystyrene/Schiff base blends showed novel ball-like microspheres with a diameter of 3.4⁻4.3 µm. The Schiff bases were able to endow excellent protection to polystyrene against ultraviolet irradiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...