Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
BMC Microbiol ; 24(1): 190, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816687

ABSTRACT

BACKGROUND: Urinary tract infections (UTIs) are common bacterial infections, primarily caused by uropathogenic Escherichia coli (UPEC), leading to significant health issues and economic burden. Although antibiotics have been effective in treating UPEC infections, the rise of antibiotic-resistant strains hinders their efficacy. Hence, identifying novel bacterial targets for new antimicrobial approaches is crucial. Bacterial factors required for maintaining the full virulence of UPEC are the potential target. MepM, an endopeptidase in E. coli, is involved in the biogenesis of peptidoglycan, a major structure of bacterial envelope. Given that the bacterial envelope confronts the hostile host environment during infections, MepM's function could be crucial for UPEC's virulence. This study aims to explore the role of MepM in UPEC pathogenesis. RESULTS: MepM deficiency significantly impacted UPEC's survival in urine and within macrophages. Moreover, the deficiency hindered the bacillary-to-filamentous shape switch which is known for aiding UPEC in evading phagocytosis during infections. Additionally, UPEC motility was downregulated due to MepM deficiency. As a result, the mepM mutant displayed notably reduced fitness in causing UTIs in the mouse model compared to wild-type UPEC. CONCLUSIONS: This study provides the first evidence of the vital role of peptidoglycan endopeptidase MepM in UPEC's full virulence for causing UTIs. MepM's contribution to UPEC pathogenesis may stem from its critical role in maintaining the ability to resist urine- and immune cell-mediated killing, facilitating the morphological switch, and sustaining motility. Thus, MepM is a promising candidate target for novel antimicrobial strategies.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity , Uropathogenic Escherichia coli/enzymology , Uropathogenic Escherichia coli/drug effects , Animals , Mice , Escherichia coli Infections/microbiology , Virulence , Endopeptidases/genetics , Endopeptidases/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , Peptidoglycan/metabolism , Macrophages/microbiology , Macrophages/immunology , Humans , Disease Models, Animal
2.
Eur Radiol Exp ; 8(1): 50, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570418

ABSTRACT

BACKGROUND: Heartbeat-based cross-sectional area (CSA) changes in the right main pulmonary artery (MPA), which reflects its distensibility associated with pulmonary hypertension, can be measured using dynamic ventilation computed tomography (DVCT) in patients with and without chronic obstructive pulmonary disease (COPD) during respiratory dynamics. We investigated the relationship between MPA distensibility (MPAD) and respiratory function and how heartbeat-based CSA is related to spirometry, mean lung density (MLD), and patient characteristics. METHODS: We retrospectively analyzed DVCT performed preoperatively in 37 patients (20 female and 17 males) with lung cancer aged 70.6 ± 7.9 years (mean ± standard deviation), 18 with COPD and 19 without. MPA-CSA was separated into respiratory and heartbeat waves by discrete Fourier transformation. For the cardiac pulse-derived waves, CSA change (CSAC) and CSA change ratio (CSACR) were calculated separately during inhalation and exhalation. Spearman rank correlation was computed. RESULT: In the group without COPD as well as all cases, CSACR exhalation was inversely correlated with percent residual lung volume (%RV) and RV/total lung capacity (r = -0.68, p = 0.003 and r = -0.58, p = 0.014). In contrast, in the group with COPD, CSAC inhalation was correlated with MLDmax and MLD change rate (MLDmax/MLDmin) (r = 0.54, p = 0.020 and r = 0.64, p = 0.004) as well as CSAC exhalation and CSACR exhalation. CONCLUSION: In patients with insufficient exhalation, right MPAD during exhalation was decreased. Also, in COPD patients with insufficient exhalation, right MPAD was reduced during inhalation as well as exhalation, which implied that exhalation impairment is a contributing factor to pulmonary hypertension complicated with COPD. RELEVANCE STATEMENT: Assessment of MPAD in different respiratory phases on DVCT has the potential to be utilized as a non-invasive assessment for pulmonary hypertension due to lung disease and/or hypoxia and elucidation of its pathogenesis. KEY POINTS: • There are no previous studies analyzing all respiratory phases of right main pulmonary artery distensibility (MPAD). • Patients with exhalation impairment decreased their right MPAD. • Analysis of MPAD on dynamic ventilation computed tomography contributes to understanding the pathogenesis of pulmonary hypertension due to lung disease and/or hypoxia in patients with expiratory impairment.


Subject(s)
Hypertension, Pulmonary , Lung Diseases , Pulmonary Disease, Chronic Obstructive , Male , Humans , Female , Pulmonary Artery/diagnostic imaging , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/complications , Retrospective Studies , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/complications , Tomography, X-Ray Computed/methods , Hypoxia/complications
3.
Interv Radiol (Higashimatsuyama) ; 9(1): 41-48, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38525000

ABSTRACT

Preoperative portal vein embolization is a beneficial option to reduce the risk of postoperative liver failure by promoting the growth of the future liver remnant. In particular, a percutaneous transhepatic procedure (percutaneous transhepatic portal vein embolization) has been developed as a less-invasive approach. Although percutaneous transhepatic portal vein embolization is widely recognized as a safe procedure, various complications, including rare but fatal adverse events, have been reported. Currently, there are no prospective clinical trials regarding percutaneous transhepatic portal vein embolization procedures and no standard guidelines for the PTPE procedure in Japan. As a result, various methods and various embolic materials are used in each hospital according to each physician's policy. The purpose of these guidelines is to propose appropriate techniques at present and to identify issues that should be addressed in the future for safer and more reliable percutaneous transhepatic portal vein embolization techniques.

4.
J Infect Chemother ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38442770

ABSTRACT

INTRODUCTION: Carbon dioxide-dependent Proteus mirabilis has been isolated from clinical specimens. It is not clear whether mutations in carbonic anhydrase are responsible for the carbon dioxide dependence of P. mirabilis. The pathogenicity of carbon dioxide-dependent P. mirabilis also remains unclear. The purpose of this study was to determine the cause carbon dioxide dependence of P. mirabilis and its pathogenicity. METHODS: The DNA sequence of can encoding carbonic anhydrase of a carbon dioxide-dependent P. mirabilis small colony variant (SCV) isolate was analyzed. To confirm that impaired carbonic anhydrase activity is responsible for the formation of the carbon dioxide-dependent SCV phenotype of P. mirabilis, we performed complementation experiments using plasmids with intact can. Additionally, mouse infection experiments were performed to confirm the change in virulence due to the mutation of carbonic anhydrase. RESULTS: We found that the can gene of the carbon dioxide-dependent P. mirabilis SCV isolate showed had a frameshift mutation with a deletion of 1 bp (c. 173delC). The can of P. mirabilis encodes carbonic anhydrase was also found to function in Escherichia coli. The cause of the carbon dioxide-dependent SCV phenotype of P. mirabilis was an abnormality in carbonic anhydrase. Nevertheless, no changes were observed in virulence due to the mutation of carbonic anhydrase in mouse infection experiments. CONCLUSIONS: The can gene is essential for the growth of P. mirabilis in ambient air. The mechanisms underlying this fitness advantage in terms of infection warrant further investigation.

6.
Kyobu Geka ; 76(13): 1110-1114, 2023 Dec.
Article in Japanese | MEDLINE | ID: mdl-38088077

ABSTRACT

A man in his 50s was diagnosed with right upper lobe non-small-cell lung cancer (cT3N1M0, stage ⅢA) on bronchoscopy. The tumor was located at the right hilum and was bordered extensively on the pulmonary artery. We observed significant tumor shrinkage (ycT1bN1M0, stage ⅡB), following three cycles of systemic chemotherapy combined with an immune checkpoint inhibitor and performed right upper sleeve lobectomy + ND2a-2 via thoracotomy for radical resection. Postoperative histopathological examination showed no residual tumor cells, and the patient was deemed to have a histopathologic complete response. Currently, the patient is being followed up without adjuvant chemotherapy. Several recent studies have reported the usefulness of systemic chemotherapy combined with immune checkpoint inhibitor administration as preoperative induction chemotherapy. However, the role of adjuvant immunotherapy in patients with a histopathologic complete response remains unclear, and careful treatment decision-making is important.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Male , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/surgery , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Lung/pathology , Pneumonectomy/adverse effects
7.
Front Microbiol ; 14: 1189877, 2023.
Article in English | MEDLINE | ID: mdl-37303809

ABSTRACT

Characterizing genes that regulate cell growth and survival in model organisms is important for understanding higher organisms. Construction of strains harboring large deletions in the genome can provide insights into the genetic basis of cell growth compared with only studying wild-type strains. We have constructed a series of genome-reduced strains with deletions spanning approximately 38.9% of the E. coli chromosome. Strains were constructed by combining large deletions in chromosomal regions encoding nonessential gene groups. We also isolated strains Δ33b and Δ37c, whose growth was partially restored by adaptive laboratory evolution (ALE). Genome sequencing of nine strains, including those selected following ALE, identified the presence of several Single Nucleotide Variants (SNVs), insertions, deletions, and inversions. In addition to multiple SNVs, two insertions were identified in ALE strain Δ33b. The first was an insertion at the promoter region of pntA, which increased cognate gene expression. The second was an insertion sequence (IS) present in sibE, encoding the antitoxin in a toxin-antitoxin system, which decreased expression of sibE. 5 strains of Δ37c independently isolated following ALE harboring multiple SNVs and genetic rearrangements. Interestingly, a SNV was identified in the promoter region of hcaT in all five strains, which increased hcaT expression and, we predict, rescued the attenuated Δ37b growth. Experiments using defined deletion mutants suggested that hcaT encodes a 3-phenylpropionate transporter protein and is involved in survival during stationary phase under oxidative stress. This study is the first to document accumulation of mutations during construction of genome-reduced strains. Furthermore, isolation and analysis of strains derived from ALE in which the growth defect mediated by large chromosomal deletions was rescued identified novel genes involved in cell survival.

8.
Medicine (Baltimore) ; 102(21): e33918, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37233409

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has restricted many medical practices. We aimed to investigate the impact of the COVID-19 pandemic on the number of bronchoscopies, outpatients, and hospital admissions. We retrospectively analyzed the number of outpatients, admissions, and bronchoscopies performed between March 2020 and May 2022. We defined "Peak month of the pandemic," "Wave of the pandemic," "Month in the wave," and "Period of a state of emergency" for each analysis. In the first year of the COVID-19 pandemic, analysis of variance (ANOVA) in linear mixed models indicated significant effects of "month in each wave" on the number of bronchoscopies (P = .003), outpatients (P = .041), and admissions (P = .017). The number of outpatients, admissions, and bronchoscopies was significantly influenced by the first wave of the COVID-19 pandemic. In contrast, in the second year of the COVID-19 pandemic, a mixed-ANOVA indicated significant effects of "month in each wave" only on the number of outpatients (P = .020) but no significant effects on the number of bronchoscopies (P = .407) and admissions (P = .219). During the second year of the pandemic, the number of bronchoscopies and admissions was not significantly affected by the waves of the pandemic. There were no significant differences in the number of admissions and bronchoscopies between the fourth and sixth waves. Although the number of bronchoscopies was found to be significantly affected in the early stages of the COVID-19 pandemic, the impact of the pandemic was much more limited thereafter.


Subject(s)
Bronchoscopy , COVID-19 , Humans , Tertiary Care Centers , COVID-19/epidemiology , Pandemics , Retrospective Studies
9.
Article in English | MEDLINE | ID: mdl-36945706

ABSTRACT

Purpose: To correlate the ratio of the non-dependent to dependent aspects of the maximal pleural movement vector (MPMVND/D) and gravity-oriented collapse ratio (GCRND/D), and the mean lung field density (MLD) obtained using four-dimensional (4D) dynamic-ventilation computed tomography (DVCT) with airflow limitation parameters and the Brinkman index. Materials and Methods: Forty-seven patients, including 22 patients with COPD, 13 non-COPD smokers, and 12 non-smokers, with no/slight pleural adhesion confirmed using a thoracoscope, underwent 4D-DVCT with 16 cm coverage. Coordinates for the lung field center, as well as ventral and dorsal pleural points, set on the central trans-axial levels in the median and para-median sagittal planes at end-inspiration, were automatically measured (13-17 frame images, 0.35 seconds/frame). MPMVND/D and GCRND/D were calculated based on MPMV and GCR values for all the included points and the lung field center. MLD was automatically measured in each of the time frames, and the maximal change ratio of MLD (MLDCR) was calculated. These measured values were compared among COPD patients, non-COPD smokers, and non-smokers, and were correlated with the Brinkman index, FEV1/FVC, FEV1 predicted, RV/TLC, and FEF25-75% using Spearman's rank coefficients. Results: MPMVND/D was highest in non-smokers (0.819±0.464), followed by non-COPD smokers (0.405±0.131) and patients with COPD (-0.219±0.900). GCRND/D in non-smokers (1.003±1.384) was higher than that in patients with COPD (-0.164±1.199). MLDCR in non-COPD smokers (0.105±0.028) was higher than that in patients with COPD (0.078±0.027). MPMVND/D showed positive correlations with FEV1 predicted (r=0.397, p=0.006), FEV1/FVC (r=0.501, p<0.001), and FEF25-75% (r=0.368, p=0.012). GCRND/D also demonstrated positive correlations with FEV1 (r=0.397, p=0.006), FEV1/FVC (r=0.445, p=0.002), and FEF25-75% (r=0.371, p=0.011). MPMVND/D showed a negative correlation with the Brinkman index (r=-0.398, p=0.006). Conclusion: We demonstrated that reduced MPMVND/D and GCRND/D were associated with respiratory functional indices, in addition to a negative association of MPMVND/D with the Brinkman index, which should be recognized when assessing local pleural adhesion on DVCT, especially for ventral pleural aspects.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Lung/diagnostic imaging , Smoking/adverse effects , Smokers , Four-Dimensional Computed Tomography
10.
Front Immunol ; 14: 1116238, 2023.
Article in English | MEDLINE | ID: mdl-36891311

ABSTRACT

Background: Adjuvants are chemical or biological materials that enhance the efficacy of vaccines. A-910823 is a squalene-based emulsion adjuvant used for S-268019-b, a novel vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is currently in clinical development. Published evidence has demonstrated that A-910823 can enhance the induction of neutralizing antibodies against SARS-CoV-2 in humans and animal models. However, the characteristics and mechanisms of the immune responses induced by A-910823 are not yet known. Methods and Results: To characterize A-910823, we compared the adaptive immune response profile enhanced by A-910823 with that of other adjuvants (AddaVax, QS21, aluminum salt-based adjuvants, and empty lipid nanoparticle [eLNP]) in a murine model. Compared with other adjuvants, A-910823 enhanced humoral immune responses to an equal or greater extent following potent T follicular helper (Tfh) and germinal center B (GCB) cell induction, without inducing a strong systemic inflammatory cytokine response. Furthermore, S-268019-b containing A-910823 adjuvant produced similar results even when given as a booster dose following primary administration of a lipid nanoparticle-encapsulated messenger RNA (mRNA-LNP) vaccine. Preparation of modified A-910823 adjuvants to identify which components of A-910823 play a role in driving the adjuvant effect and detailed evaluation of the immunological characteristics induced by each adjuvant showed that the induction of humoral immunity and Tfh and GCB cell induction in A-910823 were dependent on α-tocopherol. Finally, we revealed that the recruitment of inflammatory cells to the draining lymph nodes and induction of serum cytokines and chemokines by A-910823 were also dependent on the α-tocopherol component. Conclusions: This study demonstrates that the novel adjuvant A-910823 is capable of robust Tfh cell induction and humoral immune responses, even when given as a booster dose. The findings also emphasize that α-tocopherol drives the potent Tfh-inducing adjuvant function of A-910823. Overall, our data provide key information that may inform the future production of improved adjuvants.


Subject(s)
COVID-19 , Immunity, Humoral , Humans , Animals , Mice , T Follicular Helper Cells , alpha-Tocopherol/pharmacology , Squalene/pharmacology , Emulsions , SARS-CoV-2 , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic
11.
Sci Rep ; 12(1): 20861, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36460696

ABSTRACT

Vaccines that efficiently target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for coronavirus disease (COVID-19), are the best means for controlling viral spread. This study evaluated the efficacy of the COVID-19 vaccine S-268019-b, which comprises the recombinant full-length SARS-CoV-2 spike protein S-910823 (antigen) and A-910823 (adjuvant). In addition to eliciting both Th1-type and Th2-type cellular immune responses, two doses of S-910823 plus A-910823 induced anti-spike protein IgG antibodies and neutralizing antibodies against SARS-CoV-2. In a SARS-CoV-2 challenge test, S-910823 plus A-910823 mitigated SARS-CoV-2 infection-induced weight loss and death and inhibited viral replication in mouse lungs. S-910823 plus A-910823 promoted cytokine and chemokine at the injection site and immune cell accumulation in the draining lymph nodes. This led to the formation of germinal centers and the induction of memory B cells, antibody-secreting cells, and memory T cells. These findings provide fundamental property of S-268019-b, especially importance of A-910823 to elicit humoral and cellular immune responses.


Subject(s)
COVID-19 , Vaccines , Mice , Animals , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Neutralizing , Immunity
12.
Vaccine ; 40(52): 7520-7525, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36372670

ABSTRACT

SARS-CoV-2 Omicron subvariants such as BA.2.12.1, BA.4 and BA.5 have been spreading rapidly and become dominant worldwide. Here we report the homologous or heterologous booster effects of S-268019-b, a recombinant spike protein vaccine with the squalene-based adjuvant A-910823 in cynomolgus macaques. In macaques which had been primed with S-268019-b or mRNA vaccines, boosting with S-268019-b enhanced neutralizing antibodies (NAb) against ancestral SARS-CoV-2. Since boosting with the antigen without adjuvant did not efficiently restore NAb titers, adjuvant A-910823 was essential for the booster effect. Importantly, boosting with S-268019-b enhanced NAb against all of the Omicron subvariants we tested, including BA.2.12.1, BA.4 and BA.5, in comparison to two vaccine doses. Additionally, expansion of Omicron-specific B cells was confirmed after boosting with S-268019-b. These results indicate that a booster dose of S-268019-b with the adjuvant enhances the neutralization breadth.


Subject(s)
COVID-19 , Squalene , Animals , SARS-CoV-2 , COVID-19/prevention & control , Vaccines, Synthetic/genetics , Adjuvants, Immunologic , Macaca fascicularis , Antibodies, Neutralizing , Vaccination
13.
J Spinal Cord Med ; : 1-9, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35993796

ABSTRACT

CONTEXT/OBJECTIVE: The degree of spinal cord compression does not always parallel neurological symptoms. We considered that some compensatory neuroprotective mechanism underlies the expression of this neurological phenotype. Oxygen-regulated-protein 150 (ORP150) is neuroprotective and expressed in neurons in response to neuronal ischemia. We sought to elucidate whether ORP150 expression is associated with the severity and variation of neurological recovery in our rat model of chronic spinal cord compression. METHODS: We made a rat model of chronic spinal cord compression inserting an expandable water-absorbing polyurethane sheet. A neurological behavioral assessment of the severity of paralysis was performed for 10 weeks postoperatively. The rat model was defined as two groups: a myelopathy group with decreased locomotor function and an asymptomatic group. At 10 weeks postoperatively, the spinal cord of the cervical segment was resected for histology and qPCR. RESULTS: Slowly progressive paralysis appeared at 5-10 weeks postoperatively in 53% of the rats with spinal cord compression. The asymptomatic group had no histological changes indicative of myelopathy. Histology and qPCR showed increased expression of ORP150 in the asymptomatic group, but the ratio of ORP150-positive neuron in the two groups was not significantly different. CONCLUSION: The expression of ORP150 in neurons associated with spinal cord compression suggested that the spinal cord was under ischemic stress due to compression, but relation to the development of myelopathy was unclear. The results suggested that some other compensatory mechanisms may exist in response to spinal cord compression in asymptomatic rats.

14.
Vaccine ; 40(31): 4231-4241, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35691872

ABSTRACT

The vaccine S-268019-b is a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-protein vaccine consisting of full-length recombinant SARS-CoV-2 S-protein (S-910823) as antigen, mixed with the squalene-based adjuvant A-910823. The current study evaluated the immunogenicity of S-268019-b using various doses of S-910823 and its vaccine efficacy against SARS-CoV-2 challenge in cynomolgus monkeys. The different doses of S-910823 combined with A-910823 were intramuscularly administered twice at a 3-week interval. Two weeks after the second dosing, dose-dependent humoral immune responses were observed with neutralizing antibody titers being comparable to that of human convalescent plasma. Pseudoviruses harboring S proteins from Beta and Gamma SARS-CoV-2 variants displayed approximately 3- to 4-fold reduced sensitivity to neutralizing antibodies induced after two vaccine doses compared with that against ancestral viruses, whereas neutralizing antibody titers were reduced >14-fold against the Omicron variant. Cellular immunity was also induced with a relative Th1 polarized response. No adverse clinical signs or weight loss associated with the vaccine were observed, suggesting safety of the vaccine in cynomolgus monkeys. Immunization with 10 µg of S-910823 with A-910823 demonstrated protective efficacy against SARS-CoV-2 challenge according to genomic and subgenomic viral RNA transcript levels in nasopharyngeal, throat, and rectal swab specimens. Pathological analysis revealed no detectable vaccine-dependent enhancement of disease in the lungs of challenged vaccinated monkeys. The current findings provide fundamental information regarding vaccine doses for human trials and support the development of S-268019-b as a safe and effective vaccine for controlling the current pandemic, as well as general protection against SARS-CoV-2 moving forward.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , Immunization, Passive , Immunogenicity, Vaccine , Macaca fascicularis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
15.
Sci Rep ; 12(1): 8247, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581321

ABSTRACT

The usefulness of depression scales for patients with cancer based on item response theory (IRT) and computer adaptive testing (CAT) has not yet been fully explored. This study thus aimed to develop an IRT-based tool for measuring depression in patients with cancer. We analyzed data from 393 patients with cancer from four tertiary centers in Japan who had not received psychiatric treatment. They answered 62 questions across five categories regarding their psychiatric status over the previous week. We selected 28 items that satisfied the assumptions of IRT, fitted a graded response model to these items, and performed CAT simulations. The CAT simulation used an average of 6.96 items and showed a Pearson's correlation coefficient of 0.916 (95% confidence interval, 0.899-0.931) between the degree of depression estimated by simulation and that estimated using all 28 items. The measurement precision of CAT with only four items was superior to that of the estimation using the calibrated Patient Health Questionnaire-9. These results imply that this scale is useful and accurate for measuring depression in patients with cancer.


Subject(s)
Depression , Neoplasms , Computers , Depression/diagnosis , Humans , Neoplasms/complications , Patient Health Questionnaire , Personal Satisfaction , Psychometrics/methods , Reproducibility of Results , Surveys and Questionnaires
16.
J Microbiol Immunol Infect ; 55(4): 686-694, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34963576

ABSTRACT

BACKGROUND: Escherichia coli is the most common cause of urinary tract infections (UTIs). It is widely accepted that uropathogenic E. coli (UPEC) mainly emerge from the distal gut microbiota. Identification of bacterial characteristics that are able to differentiate UPEC from fecal commensal strains will facilitate the development of novel strategies to detect and monitor the spread of UPEC. METHODS: Fifty fecal commensal, 83 UTI-associated and 40 biliary tract infection (BTI)-associated E. coli isolates were analyzed. The NotI restriction patterns of chromosomal DNA in the isolates were determined by pulse-field gel electrophoresis. The phylogenetic types and the presence of 9 known virulence genes of each isolate were determined by PCR analyses. Additionally, the susceptibilities of the isolates to antibiotics were revealed. Then the associations of NotI resistance with UTI-associated isolates, phylotypes, and antibiotic resistance were assessed. RESULTS: NotI resistance was correlated with UTI-associated isolates, compared to the fecal isolates. Consistently, NotI-resistant isolates harbored a greater number of virulence factors and mainly belonged to phylotype B2. Additionally NotI resistance was correlated with chloramphenicol resistance among the bacteria. Among the fecal, UTI-associated and BTI-associated groups, the distribution of NotI-resistant group B2 isolates was correlated with UTI-associated bacteria. CONCLUSION: NotI resistance alone is a potential marker for distinguishing fecal strains and UPEC, while the combination of NotI resistance and B2 phylogeny is a candidate marker to differentiate UPEC from fecal and other extraintestinal pathogenic E. coli. Additionally, NotI resistance may be valuable for assessing the potential of chloramphenicol resistance of E. coli.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Anti-Bacterial Agents , Humans , Phylogeny , Virulence Factors
17.
J Surg Case Rep ; 2021(12): rjab292, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34925754

ABSTRACT

The Da Vinci Surgical System is an ergonomically devised and excellent surgical support device. However, surgeon skill is of paramount importance since human error cannot be completely eliminated. We report a case of bleeding from the pulmonary artery due to a footswitch misstep. A 72-year-old male with suspected right upper lobe lung cancer underwent robot-assisted thoracoscopic surgery (RATS). While avoiding the pulmonary artery with the right arm spatula and trying to cauterize V2t with the left arm bipolar-forceps, the footswitch was accidently activated and the spatula was energized, resulting in pulmonary artery trauma and blood loss. After this case, we changed the surgical procedure from a monopolar-bipolar combination use to a bipolar-only use and noted no significant difference in the console duration, and less intraoperative blood loss. Human errors can occur anytime. Especially for surgeons new to RATS, simplified foot management should be considered until RATS mastery is achieved.

18.
Kyobu Geka ; 74(12): 992-995, 2021 Nov.
Article in Japanese | MEDLINE | ID: mdl-34795140

ABSTRACT

A 73 years old male patient with the past history of kidney transplantation was admitted to our hospital for treatment of coronavirus disease 2019 (COVID-19) pneumonia. On the 25th day after the onset of symptoms when his condition was improving, he suddenly developed pneumothorax. Chest tube drainage was performed and connected the tube to the drainage device using a high efficiency particulate air (HEPA) filter. Because of the improvement of infection, the HEPA filter was removed from the drainage device on day 28. Chest tube drainage was continued by day 35, and he was discharged and introduced home oxygen therapy on day 51.


Subject(s)
COVID-19 , Pneumothorax , Aged , Chest Tubes , Drainage , Humans , Male , Pneumothorax/diagnostic imaging , Pneumothorax/surgery , SARS-CoV-2
19.
Thorac Cancer ; 12(22): 3062-3067, 2021 11.
Article in English | MEDLINE | ID: mdl-34622569

ABSTRACT

In advanced lung cancer treatment, immunotherapy provides durable responses in some patients. However, other patients experience progressive disease and the resistance mechanisms to immunotherapy have yet been fully elucidated. Small cell transformation of non-small cell lung cancer (NSCLC) is commonly recognized as one of the resistance mechanisms to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors in EGFR-mutant NSCLC treatment. As a resistant mechanism for immunotherapy, we report the first case of small cell transformation in 2017. Since then, eight similar cases have been reported and the concept of small cell transformation is now becoming more prevalent as a mechanism of immunotherapy resistance. In our facility, we have experienced four cases of small cell transformation after immunotherapy (including the reported case in 2017). The histology of each primary tumor was squamous cell carcinoma, large cell type neuroendocrine carcinoma, or poorly differentiated NSCLC. None had driver gene mutations. Nivolumab was administered in all four cases and atezolizumab was administered as a next line to nivolumab treatment in one case. The best response to immunotherapy was partial response or stable disease. There was a wide range of periods from the start of immunotherapy to confirmation of small cell transformation (from 2 weeks to almost 3 years). In conclusion, small cell transformation is an important resistance mechanism in cancer immunotherapy. When NSCLC progresses after immunotherapy, the possibility of small cell transformation and rebiopsy should always be encouraged, as it leads to clarification of the resistance mechanisms and frequency.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Immunotherapy/methods , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Aged , Carcinoma, Non-Small-Cell Lung/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Drug Resistance, Neoplasm , Female , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Mutation , Protein Kinase Inhibitors/therapeutic use , Small Cell Lung Carcinoma/genetics
20.
Front Microbiol ; 12: 667782, 2021.
Article in English | MEDLINE | ID: mdl-34122381

ABSTRACT

Escherichia coli is one major cause of bacterial infections and can horizontally acquire antimicrobial resistance and virulence genes through conjugation. Because conjugative plasmids can rapidly spread among bacteria of different species, the plasmids carrying both antimicrobial resistance and virulence genes may pose a significant threat to public health. Therefore, the identification and characterization of these plasmids may facilitate a better understanding of E. coli pathogenesis and the development of new strategies against E. coli infections. Because iron uptake ability is a potential virulence trait of bacteria, we screened for E. coli conjugative plasmids able to confer both iron uptake ability and ampicillin resistance. The plasmid pEC41, which was derived from the bacteremia clinical isolate EC41, was identified. EC41, which carried the fimH27 allele, belonged to sequence type (ST) 405 and phylogroup D. According to the sequencing analyses, pEC41 was 86 kb in size, and its backbone structure was almost identical to that of another highly conjugative plasmid, pCTX-M3, in which the extended-spectrum ß-lactamase gene bla CTX-M-3 was originally identified. pEC41 carried bla CTX-M-3 and bla TEM-1. The ferric citrate uptake (fec) system was identified in pEC41 and was responsible for conferring iron uptake ability. The fec system contributes to the pathogenesis of EC41 in systemic infections but not in urinary tract infections (UTIs). However, this system promoted competitive fitness of a cystitis-associated clinical isolate to colonize urinary tracts. Additionally, the distribution of the fec system was related to E. coli isolates associated with human bacteremia and UTIs. In summary, the present study identified a novel conjugative plasmid, pEC41, which conferred both antimicrobial resistance and an extra iron uptake ability to E. coli. The iron uptake ability was encoded in the fec system and contributed to E. coli pathogenesis. This study is the first to show that the fec system is a virulence factor in E. coli.

SELECTION OF CITATIONS
SEARCH DETAIL
...