Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 6(1): 169, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37604953

ABSTRACT

The biomimetic two-phase strategy employing polyene cyclization and subsequent oxidation/substitution is an effective approach for divergent syntheses of [6-6-6]-tricyclic diterpenes. However, this strategy requires lengthy sequences for syntheses of oxygenated tricyclic aromatic abietane/podocarpane diterpenes owing to the many linear oxidation/substitution steps after cyclization. Here, we present a new synthetic route based on a convergent reverse two-phase strategy employing a reverse radical cyclization approach, which enabled the unified short syntheses of four aromatic abietane/podocarpane diterpenes and the divergent short syntheses of other related diterpenes. Oxygenated and substituted precursors for cyclization were convergently prepared through Friedel-Crafts acylation and rhodium-catalyzed site-selective iodination. Radical redox cyclization using an iridium photoredox catalyst involving neophyl rearrangement furnished the thermodynamically favored 6-membered ring preferentially. (±)-5,6-Dehydrosugiol, salvinolone, crossogumerin A, and Δ5-nimbidiol were synthesized in only 8 steps. An oxygenated cyclized intermediate was also useful for divergent derivatization to sugiol, ferruginol, saprorthoquinone, cryptomeriololide, and salvinolone.

2.
Biosci Biotechnol Biochem ; 85(3): 476-480, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33624772

ABSTRACT

Caffeic acid ß-phenethyl ester (CAPE), an antioxidative bioactive catechol isolated from propolis, was semisynthesized from chlorogenic acid and related compounds in an extract of raw (unroasted) Robusta coffee (Coffea canephora) beans in 5 steps and a total yield of 31%. Oxidative degradation of the intermediates and target molecule was prevented by alkaline hydrolysis of the chlorogenic acids in the presence of sodium dithionite (Na2S2O4) and deprotection of the catecholic diacetate precursor by Candida antarctica lipase B-mediated transesterification as the final step.


Subject(s)
Antioxidants/chemical synthesis , Caffeic Acids/chemical synthesis , Coffea/chemistry , Phenylethyl Alcohol/analogs & derivatives , Plant Extracts/chemical synthesis , Propolis/chemistry , Esterification , Phenylethyl Alcohol/chemical synthesis
3.
Biosci Biotechnol Biochem ; 84(7): 1339-1344, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32290758

ABSTRACT

Catathelasmols C, D, and E, which had been isolated from Catathelasma imperiale as inhibitors for 11-hydroxysteroid dehydrogenases, were comprehensively semisynthesized from commercially available D-glutamic acid. The key synthetic intermediate, (R)-pentane-1,2,5-triol, was site-selectively acetylated by treatment with vinyl acetate and Candida antarctica lipase B (Novozym 435) in tetrahydrofuran (THF) at 25°C to furnish 1,5-diacetate (catathelasmol E, quantitative). The acetylation occurred site-selectively on the primary alcohols at the C-1 and C-5 positions over the secondary alcohol at the C-2 position. Dichromic acid oxidation provided 2-oxopentane-1,5-diyl diacetate (catathelasmol C, 78%). Burkholderia cepacia lipase-catalyzed transesterification with methanol in THF at - 5°C proceeded preferentially on the acetate at C-1 located adjacent to the C-2 carbonyl group over the other terminal acetate at the C-5 position. 5-Hydroxy-4-oxopentyl acetate (catathelasmol D) was obtained in 53% yield.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Agaricales/chemistry , Catalytic Domain , Glutamic Acid/metabolism , Lipase/metabolism , Pentanols/chemical synthesis , Acetates/metabolism , Acetylation , Burkholderia cepacia/enzymology , Catalysis , Fungal Proteins/metabolism , Furans/metabolism , Methanol/metabolism , Pentanols/isolation & purification , Secondary Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...