Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(12): 105393, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890784

ABSTRACT

Membrane transport proteins require a gating mechanism that opens and closes the substrate transport pathway to carry out unidirectional transport. The "gating" involves large conformational changes and is achieved via multistep reactions. However, these elementary steps have not been clarified for most transporters due to the difficulty of detecting the individual steps. Here, we propose these steps for the gate opening of the bacterial Na+ pump rhodopsin, which outwardly pumps Na+ upon illumination. We herein solved an asymmetric dimer structure of Na+ pump rhodopsin from the bacterium Indibacter alkaliphilus. In one protomer, the Arg108 sidechain is oriented toward the protein center and appears to block a Na+ release pathway to the extracellular (EC) medium. In the other protomer, however, this sidechain swings to the EC side and then opens the release pathway. Assuming that the latter protomer mimics the Na+-releasing intermediate, we examined the mechanism for the swing motion of the Arg108 sidechain. On the EC surface of the first protomer, there is a characteristic cluster consisting of Glu10, Glu159, and Arg242 residues connecting three helices. In contrast, this cluster is disrupted in the second protomer. Our experimental results suggested that this disruption is a key process. The cluster disruption induces the outward movement of the Glu159-Arg242 pair and simultaneously rotates the seventh transmembrane helix. This rotation resultantly opens a space for the swing motion of the Arg108 sidechain. Thus, cluster disruption might occur during the photoreaction and then trigger sequential conformation changes leading to the gate-open state.


Subject(s)
Rhodopsin , Cell Membrane/metabolism , Ion Transport , Ions/metabolism , Protein Subunits/metabolism , Rhodopsin/chemistry , Rhodopsin/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals
2.
FEBS J ; 289(12): 3505-3520, 2022 06.
Article in English | MEDLINE | ID: mdl-35030303

ABSTRACT

Staphylococcus aureus expresses several hemolytic pore-forming toxins (PFTs), which are all commonly composed of three domains: cap, rim and stem. PFTs are expressed as soluble monomers and assemble to form a transmembrane ß-barrel pore in the erythrocyte cell membrane. The stem domain undergoes dramatic conformational changes to form a pore. Staphylococcal PFTs are classified into two groups: one-component α-hemolysin (α-HL) and two-component γ-hemolysin (γ-HL). The α-HL forms a homo-heptamer, whereas γ-HL is an octamer composed of F-component (LukF) and S-component (Hlg2). Because PFTs are used as materials for nanopore-based sensors, knowledge of the functional properties of PFTs is used to develop new, engineered PFTs. However, it remains challenging to design PFTs with a ß-barrel pore because their formation as transmembrane protein assemblies requires large conformational changes. In the present study, aiming to investigate the design principles of the ß-barrel formed as a consequence of the conformational change, chimeric mutants composed of the cap/rim domains of α-HL and the stem of LukF or Hlg2 were prepared. Biochemical characterization and electron microscopy showed that one of them assembles as a heptameric one-component PFT, whereas another participates as both a heptameric one- and heptameric/octameric two-component PFT. All chimeric mutants intrinsically assemble into SDS-resistant oligomers. Based on these observations, the role of the stem domain of these PFTs is discussed. These findings provide clues for the engineering of staphylococcal PFT ß-barrels for use in further promising applications.


Subject(s)
Bacterial Toxins , Hemolysin Proteins , Bacterial Toxins/metabolism , Hemolysin Proteins/metabolism , Hemolysis , Leukocidins/chemistry , Leukocidins/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
3.
Sci Rep ; 11(1): 8211, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859271

ABSTRACT

How do skilled players change their motion patterns depending on motion effort? Pitchers commonly accelerate wrist and elbow joint rotations via proximal joint motions. Contrastingly, they show individually different pitching motions, such as in wind-up or follow-through. Despite the generality of the uniform and diverse features, effort-dependent effects on these features are unclear. Here, we reveal the effort dependence based on muscle activity data in natural three-dimensional pitching performed by skilled players. We extract motor modules and their effort dependence from the muscle activity data via tensor decomposition. Then, we reveal the unknown relations among motor modules, common features, unique features, and effort dependence. The current study clarifies that common features are obvious in distinguishing between low and high effort and that unique features are evident in differentiating high and highest efforts.


Subject(s)
Baseball/physiology , Motor Activity/physiology , Musculoskeletal Physiological Phenomena , Physical Exertion/physiology , Acceleration , Adult , Athletes , Biomechanical Phenomena/physiology , Elbow Joint/physiology , Humans , Male , Middle Aged , Range of Motion, Articular/physiology , Shoulder Joint/physiology , Wrist Joint/physiology , Young Adult
4.
Biochem Biophys Res Commun ; 514(1): 31-36, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31014674

ABSTRACT

Encapsulation of guest molecules into the vacant space of biomacromolecular crystals has been utilized for various purposes including functioning as a protein container to protect against physical stress and structural determination of the guest. Todarodes pacificus hemocyanin (TpHc) is a hollow cylindrical decameric protein complex with an inner space 110 Šin diameter and 160 Šin height. In the crystal, TpHc forms a straw-like bundle and contains one reactive Cys (Cys3246) in the inner domain of each protomer. Here, we conjugated biotin onto Cys3246 of TpHc followed by incubation with streptavidin. The streptavidin was immobilized into the inner space of TpHc due to its interaction with biotin. Moreover, the complex containing TpHc and streptavidin was crystallized under the same conditions used for unmodified TpHc. In order to expand this methodology for a variety of proteins, we conjugated the ligand nitrilotriacetic acid (NTA) chelated to a Ni2+ ion (Ni2+-NTA) to TpHc. We found that His-tagged green fluorescent protein (GFP) was encapsulated into the Ni2+-NTA-conjugated TpHc via the interaction between the His-tag and the Ni2+-NTA group. X-ray crystallography demonstrated that the crystal packing of the complex containing TpHc and GFP was identical to that of the unmodified TpHc. Our guest immobilization method is distinct from previous approaches that are dependent on diffusion of the guest into the host crystal. Thus, our findings may accelerate the development of proteinaceous crystal engineering.


Subject(s)
Decapodiformes/chemistry , Hemocyanins/chemistry , Immobilized Proteins/chemistry , Animals , Biotin/chemistry , Chelating Agents/chemistry , Crystallization , Crystallography, X-Ray , Ligands , Models, Molecular , Nickel/chemistry , Nitrilotriacetic Acid/chemistry , Protein Multimerization , Streptavidin/chemistry
5.
Biochem Biophys Res Commun ; 509(2): 577-584, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30600183

ABSTRACT

Encapsulation of guest molecules into the hollow spaces of crystals has been applied for a variety of purposes such as structure determination, separation, and catalysis of the guest. Although host-guest studies have been developed mainly in crystals of small molecules, those of biomacromolecules have recently been applied. In those reports, a huge hollow space in the protein crystal is commonly used for encapsulation of the guest. Our previous study revealed that cylindrical hemocyanins stack inside the crystal as a linear hollow structure. The diameter of the linear hollow is approximately 110 Å, which is large enough for most proteins to pass through. In the present study, we evaluated the potential of hemocyanin crystals as a host to encapsulate biomacromolecules. Confocal microscopy revealed that hemocyanin crystals encapsulate proteins of molecular mass up to 250 kDa, i.e., 27 kDa green fluorescence protein, 105 kDa allophycocyanin, 220 kDa C-phycocyanin, and 250 kDa phycoerythrin, and DNAs up to 200-bp long, whereas 440 kDa ferritin not. Further analysis revealed that hemocyanin crystals prefer a negatively charged guest rather than a positive charge to encapsulate. Moreover, a photobleaching experiment showed that the guest does not move once entrapped. This knowledge of the host-guest study using the hollow hemocyanin crystal should be of significance for further application of hollow proteinaceous crystals as a host.


Subject(s)
Crystallization/methods , Decapodiformes/chemistry , Hemocyanins/chemistry , Animals , Green Fluorescent Proteins/chemistry , Models, Molecular , Phycocyanin/chemistry , Phycoerythrin/chemistry , Porosity
6.
Environ Manage ; 47(5): 885-98, 2011 May.
Article in English | MEDLINE | ID: mdl-21416375

ABSTRACT

This paper presents a mathematical model developed using Horton-Strahler's stream order to describe basin-wide distributions of human activities, i.e., land use and human population, across several river basins with different geomorphologic features. We assume that for successive stream orders, the mean area of each land use type-paddy field, forest, city, village, etc.-and the human population form a geometric sequence, which is the same mathematical relationship as stated in Horton's laws of river geomorphology. This geometric sequence modeling implies fractal nature of human activity distributions within a river basin. GIS datasets for the land use and human population in 109 large river basins in Japan were used to verify the model. Herein, we examine the relationships between the Horton ratios and the common ratios obtained from the model to explore links between basin geomorphology and human activities. Furthermore, we quantitatively compare the human activity distributions across the 109 river basins on the basis of results obtained from the model with descriptive statistics. Further, we attempt to classify the river basins into several categories through multivariate statistical analysis.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Rivers , Water Movements , Humans , Japan
SELECTION OF CITATIONS
SEARCH DETAIL
...