Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 38(23): 5326-5327, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36222566

ABSTRACT

MOTIVATION: Class imbalance, or unequal sample sizes between classes, is an increasing concern in machine learning for metabolomic and lipidomic data mining, which can result in overfitting for the over-represented class. Numerous methods have been developed for handling class imbalance, but they are not readily accessible to users with limited computational experience. Moreover, there is no resource that enables users to easily evaluate the effect of different over-sampling algorithms. RESULTS: METAbolomics data Balancing with Over-sampling Algorithms (META-BOA) is a web-based application that enables users to select between four different methods for class balancing, followed by data visualization and classification of the sample to observe the augmentation effects. META-BOA outputs a newly balanced dataset, generating additional samples in the minority class, according to the user's choice of Synthetic Minority Over-sampling Technique (SMOTE), Borderline-SMOTE (BSMOTE), Adaptive Synthetic (ADASYN) or Random Over-Sampling Examples (ROSE). To present the effect of over-sampling on the data META-BOA further displays both principal component analysis and t-distributed stochastic neighbor embedding visualization of data pre- and post-over-sampling. Random forest classification is utilized to compare sample classification in both the original and balanced datasets, enabling users to select the most appropriate method for their further analyses. AVAILABILITY AND IMPLEMENTATION: META-BOA is available at https://complimet.ca/meta-boa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Machine Learning , Data Mining , Metabolomics
2.
J Proteome Res ; 19(11): 4553-4566, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33103435

ABSTRACT

While the COVID-19 pandemic is causing important loss of life, knowledge of the effects of the causative SARS-CoV-2 virus on human cells is currently limited. Investigating protein-protein interactions (PPIs) between viral and host proteins can provide a better understanding of the mechanisms exploited by the virus and enable the identification of potential drug targets. We therefore performed an in-depth computational analysis of the interactome of SARS-CoV-2 and human proteins in infected HEK 293 cells published by Gordon et al. (Nature2020, 583, 459-468) to reveal processes that are potentially affected by the virus and putative protein binding sites. Specifically, we performed a set of network-based functional and sequence motif enrichment analyses on SARS-CoV-2-interacting human proteins and on PPI networks generated by supplementing viral-host PPIs with known interactions. Using a novel implementation of our GoNet algorithm, we identified 329 Gene Ontology terms for which the SARS-CoV-2-interacting human proteins are significantly clustered in PPI networks. Furthermore, we present a novel protein sequence motif discovery approach, LESMoN-Pro, that identified 9 amino acid motifs for which the associated proteins are clustered in PPI networks. Together, these results provide insights into the processes and sequence motifs that are putatively implicated in SARS-CoV-2 infection and could lead to potential therapeutic targets.


Subject(s)
Betacoronavirus , Coronavirus Infections , Host-Pathogen Interactions/genetics , Pandemics , Pneumonia, Viral , Protein Interaction Maps , Algorithms , Amino Acid Motifs , Betacoronavirus/chemistry , Betacoronavirus/metabolism , Betacoronavirus/pathogenicity , COVID-19 , Cluster Analysis , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Gene Ontology , HEK293 Cells , Humans , Molecular Sequence Annotation , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Protein Binding , Protein Interaction Maps/genetics , Protein Interaction Maps/physiology , Proteins/chemistry , Proteins/classification , Proteins/genetics , Proteins/metabolism , SARS-CoV-2 , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...