Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 73: 165-180, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29249308

ABSTRACT

This study examines the performance and fouling potential of flat sheet (FS) and hollow fiber (HF) membrane bioreactors (MBRs) during the treatment of high strength landfill leachate under varying solid retention times (SRT = 5-20 days). Mixed-liquor bacterial communities were examined over time using 16S rRNA gene sequence analysis in an attempt to define linkages between the system performance and the microbial community composition. Similarly, biofilm samples were collected at the end of each SRT to characterize the microbial communities that evolved on the surface of the FS and HF membranes. In general, both systems exhibited comparable removal efficiencies that dropped significantly as SRT was decreased down to 5 days. Noticeably, ammonia and nitrite oxidizing bacteria were not detected at the tested SRTs. This suggests that the nitrifiers were not enriched, possibly due to the high organic and ammonium content of the leachate that led to low TN and NH3 removal efficiency. The steady-state fouling rate of both membranes increased linearly with the decrease in SRT at an estimated factor of 1.1 and 1.2 for the FS- and HF-MBR, respectively, when the SRT was reduced from 15 to 10 days and from 10 to 5 days. Similar dominant genera were detected in both MBRs, including Pseudomonas, Aequorivita, Ulvibacter, Taibaiella, and Thermus. Aequorivita, Taibaiella; Thermus were the dominant genera in the biofilms. Hierarchical clustering and non-metric multidimensional scaling revealed that while the mixed liquor communities in the FS-MBR and HF-MBRs were dynamic, they clustered separately. Similarly, biofilm communities on the FS and HF membranes differed in the dynamic bacterial community structure, especially for the FS-MBR; however this was less dynamic than the mixed liquor community.


Subject(s)
Bioreactors , Membranes, Artificial , Water Pollutants, Chemical , Biofilms , RNA, Ribosomal, 16S , Waste Disposal, Fluid , Water Purification
2.
Waste Manag ; 55: 249-56, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26775757

ABSTRACT

The Membrane Bioreactor (MBR) technology is increasingly becoming a prominent process in the treatment of high-strength wastewater such as leachate resulting from the decomposition of waste in landfills. This study presents a performance comparative assessment of flat sheet and hollow fiber membranes in bioreactors for the treatment of relatively stable landfill leachate with the objective of defining guidelines for pilot/full scale plants. For this purpose, a laboratory scale MBR system was constructed and operated to treat a leachate with Chemical Oxygen Demand (COD) (3900-7800mg/L), Biochemical Oxygen Demand (BOD5) (∼440-1537mg/L), Total Phosphorus (TP) (∼10-59mg/L), Phosphate (PO4(3)(-)) (5-58mg/L), Total Nitrogen (TN) (1500-5200mg/L), and ammonium (NH4(+)) (1770-4410mg/L). Both membranes achieved comparable BOD (92.2% vs. 93.2%) and TP (79.4% vs. 78.5%) removals. Higher PO4(3)(-) removal efficiency or percentage (87.3% vs. 81.3%) and slightly higher, but not statistically significant, COD removal efficiency were obtained with the hollow fiber membrane (71.4% vs. 68.5%). On the other hand, the flat sheet membrane achieved significantly higher TN and NH4(+) removal efficiencies (61.2% vs. 49.4% and 63.4% vs. 47.8%, respectively), which may be attributed to the less frequent addition of NaOCl compared to the hollow fiber system.


Subject(s)
Bioreactors , Filtration/instrumentation , Membranes, Artificial , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Nitrogen/analysis , Phosphorus/analysis , Waste Disposal Facilities
3.
J Air Waste Manag Assoc ; 64(9): 1073-84, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25283005

ABSTRACT

The management of landfill leachate is challenging, with relatively limited work targeting high-strength leachate. In this study, the performance of the membrane bioreactor (MBR) and sequencing batch reactor (SBR) technologies are compared in treating high-strength landfill leachate. The MBR exhibited a superior performance with removal efficiencies exceeding 95% for BOD5, TN, and NH3 and an improvement on SBR efficiencies ranging between 21 and 34%. The coupled experimental results contribute in filling a gap toward improving the management of high-strength landfill leachate and providing comparative guidelines or selection criteria and limitations for MBR and SBR applications. Implications: While the sequencing batch reactor (SBR) technology offers some flexibility in terms of cycle time and sequence, its performance is constrained when considering landfill leachate associated with significant variations in quality and quantity. Combining membrane separation and biodegradation processes or the membrane bioreactor (MBR) technology improved removal efficiencies significantly. In the context of leachate management using the MBR technology, more efforts have targeted low-strength leachate with limited attempts at moderate to high strength leachate. In this study, the SBR and MBR technologies were tested under different operating conditions to compare and evaluate their feasibility for the management of high-strength leachate from a full-scale operating landfill. Such a comparison has not been reported for high-strength leachate.


Subject(s)
Bioreactors , Water Pollutants, Chemical , Time Factors
4.
J Air Waste Manag Assoc ; 63(5): 591-604, 2013 May.
Article in English | MEDLINE | ID: mdl-23786150

ABSTRACT

UNLABELLED: The treatability of high-strength landfill leachate is challenging and relatively limited. This study examines the feasibility of treating high-strength landfill leachate (chemical oxygen demand [COD]: 7,760-11,770 mg/L, biochemical oxygen demand [BOD5]: 2,760-3,569 mg/L, total nitrogen [TN] = 980-1,160 mg/L) using a sequencing batch reactor (SBR) preceded by a coagulation-flocculation process with phosphorus nutritional balance under various mixing and aeration patterns. Simulations were also conducted to define kinetic parameters and COD fractionation. Removal efficiencies reached 89% for BOD5, 60% for COD, and 72% for TN, similar to and better than reported studies, albeit with a relatively lower hydraulic retention time (HRT) and solid retention time (SRT). The coupled experimental and simulation results contribute in filling a gap toward managing high-strength landfill leachate and providing guidelines for corresponding SBR applications. IMPLICATIONS: The treatability of high-strength landfill leachate, which is challenging and relatively limited, was demonstrated using a combined coagulation-flocculation with SBR technology and nutrient balance adjustment. The most suitable coagulant, kinetic design parameters, and COD fractionation were defined using coupled experimental and simulation results contributing in filling a gap toward managing high-strength leachate by providing guidelines for corresponding SBR applications and anticipating potential constraints related to the non-biodegradable COD fraction. In this context, while the combined coagulation-flocculation and SBR process improved removal efficiencies, posttreatment may be required for high-strength leachate, depending on discharge standards and ultimate usage of the treated leachate.


Subject(s)
Bioreactors , Phosphorus/chemistry , Refuse Disposal/methods , Water Pollutants, Chemical/chemistry , Biological Oxygen Demand Analysis , Chemical Fractionation , Flocculation , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...