Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38920119

ABSTRACT

Emotion recognition using EEG is a difficult study because the signals' unstable behavior, which is brought on by the brain's complex neuronal activity, makes it difficult to extract the underlying patterns inside it. Therefore, to analyse the signal more efficiently, in this article, a hybrid model based on IEMD-KW-Ens (Improved Empirical Mode Decomposition-Kruskal Wallis-Ensemble classifiers) technique is used. Here IEMD based technique is proposed to interpret EEG signals by adding an improved sifting stopping criterion with median filter to get the optimal decomposed EEG signals for further processing. A mixture of time, frequency and non-linear distinct features are extracted for constructing the feature vector. Afterward, we conducted feature selection using KW test to remove the insignificant ones from the feature set. Later the classification of emotions in three-dimensional model is performed in two categories i.e. machine learning based RUSBoosted trees and deep learning based convolutional neural network (CNN) for DEAP and DREAMER datasets and the outcomes are evaluated for valence, arousal, and dominance classes. The findings demonstrate that the hybrid model can successfully classify emotions in multichannel EEG signals. The decomposition approach is also instructive for improving the model's utility in emotional computing.

2.
Healthcare (Basel) ; 11(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36673557

ABSTRACT

Objective: Out-of-hospital cardiac arrest (OHCA) is a prominent cause of death worldwide. As indicated by the high proportion of COVID-19 suspicion or diagnosis among patients who had OHCA, this issue could have resulted in multiple fatalities from coronavirus disease 2019 (COVID-19) occurring at home and being counted as OHCA. Methods: We used the MeSH term "heart arrest" as well as non-MeSH terms "out-of-hospital cardiac arrest, sudden cardiac death, OHCA, cardiac arrest, coronavirus pandemic, COVID-19, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)." We conducted a literature search using these search keywords in the Science Direct and PubMed databases and Google Scholar until 25 April 2022. Results: A systematic review of observational studies revealed OHCA and mortality rates increased considerably during the COVID-19 pandemic compared to the same period of the previous year. A temporary two-fold rise in OHCA incidence was detected along with a drop in survival. During the pandemic, the community's response to OHCA changed, with fewer bystander cardiopulmonary resuscitations (CPRs), longer emergency medical service (EMS) response times, and worse OHCA survival rates. Conclusions: This study's limitations include a lack of a centralised data-gathering method and OHCA registry system. If the chain of survival is maintained and effective emergency ambulance services with a qualified emergency medical team are given, the outcome for OHCA survivors can be improved even more.

3.
Sensors (Basel) ; 21(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562767

ABSTRACT

Facial micro expressions are brief, spontaneous, and crucial emotions deep inside the mind, reflecting the actual thoughts for that moment. Humans can cover their emotions on a large scale, but their actual intentions and emotions can be extracted at a micro-level. Micro expressions are organic when compared with macro expressions, posing a challenge to both humans, as well as machines, to identify. In recent years, detection of facial expressions are widely used in commercial complexes, hotels, restaurants, psychology, security, offices, and education institutes. The aim and motivation of this paper are to provide an end-to-end architecture that accurately detects the actual expressions at the micro-scale features. However, the main research is to provide an analysis of the specific parts that are crucial for detecting the micro expressions from a face. Many states of the art approaches have been trained on the micro facial expressions and compared with our proposed Lossless Attention Residual Network (LARNet) approach. However, the main research on this is to provide analysis on the specific parts that are crucial for detecting the micro expressions from a face. Many CNN-based approaches extracts the features at local level which digs much deeper into the face pixels. However, the spatial and temporal information extracted from the face is encoded in LARNet for a feature fusion extraction on specific crucial locations, such as nose, cheeks, mouth, and eyes regions. LARNet outperforms the state-of-the-art methods with a slight margin by accurately detecting facial micro expressions in real-time. Lastly, the proposed LARNet becomes accurate and better by training with more annotated data.


Subject(s)
Emotions , Facial Expression , Attention , Face , Humans , Mouth
4.
Diagnostics (Basel) ; 10(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575475

ABSTRACT

Pneumonia causes the death of around 700,000 children every year and affects 7% of the global population. Chest X-rays are primarily used for the diagnosis of this disease. However, even for a trained radiologist, it is a challenging task to examine chest X-rays. There is a need to improve the diagnosis accuracy. In this work, an efficient model for the detection of pneumonia trained on digital chest X-ray images is proposed, which could aid the radiologists in their decision making process. A novel approach based on a weighted classifier is introduced, which combines the weighted predictions from the state-of-the-art deep learning models such as ResNet18, Xception, InceptionV3, DenseNet121, and MobileNetV3 in an optimal way. This approach is a supervised learning approach in which the network predicts the result based on the quality of the dataset used. Transfer learning is used to fine-tune the deep learning models to obtain higher training and validation accuracy. Partial data augmentation techniques are employed to increase the training dataset in a balanced way. The proposed weighted classifier is able to outperform all the individual models. Finally, the model is evaluated, not only in terms of test accuracy, but also in the AUC score. The final proposed weighted classifier model is able to achieve a test accuracy of 98.43% and an AUC score of 99.76 on the unseen data from the Guangzhou Women and Children's Medical Center pneumonia dataset. Hence, the proposed model can be used for a quick diagnosis of pneumonia and can aid the radiologists in the diagnosis process.

SELECTION OF CITATIONS
SEARCH DETAIL
...