Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 36(5): e4867, 2023 05.
Article in English | MEDLINE | ID: mdl-36326709

ABSTRACT

In magnetic resonance imaging (MRI), inhomogeneity in the main magnetic field used for imaging, referred to as off-resonance, can lead to image artifacts ranging from mild to severe depending on the application. Off-resonance artifacts, such as signal loss, geometric distortions, and blurring, can compromise the clinical and scientific utility of MR images. In this review, we describe sources of off-resonance in MRI, how off-resonance affects images, and strategies to prevent and correct for off-resonance. Given recent advances and the great potential of low-field and/or portable MRI, we also highlight the advantages and challenges of imaging at low field with respect to off-resonance.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Magnetic Fields , Image Processing, Computer-Assisted , Phantoms, Imaging
2.
Magn Reson Med ; 82(4): 1452-1461, 2019 10.
Article in English | MEDLINE | ID: mdl-31045278

ABSTRACT

PURPOSE: We introduce and validate a scalable retrospective motion correction technique for brain imaging that incorporates a machine learning component into a model-based motion minimization. METHODS: A convolutional neural network (CNN) trained to remove motion artifacts from 2D T2 -weighted rapid acquisition with refocused echoes (RARE) images is introduced into a model-based data-consistency optimization to jointly search for 2D motion parameters and the uncorrupted image. Our separable motion model allows for efficient intrashot (line-by-line) motion correction of highly corrupted shots, as opposed to previous methods which do not scale well with this refinement of the motion model. Final image generation incorporates the motion parameters within a model-based image reconstruction. The method is tested in simulations and in vivo motion experiments of in-plane motion corruption. RESULTS: While the convolutional neural network alone provides some motion mitigation (at the expense of introduced blurring), allowing it to guide the iterative joint-optimization both improves the search convergence and renders the joint-optimization separable. This enables rapid mitigation within shots in addition to between shots. For 2D in-plane motion correction experiments, the result is a significant reduction of both image space root mean square error in simulations, and a reduction of motion artifacts in the in vivo motion tests. CONCLUSION: The separability and convergence improvements afforded by the combined convolutional neural network+model-based method shows the potential for meaningful postacquisition motion mitigation in clinical MRI.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Artifacts , Brain/diagnostic imaging , Computer Simulation , Deep Learning , Humans , Movement/physiology
3.
IEEE Trans Med Imaging ; 37(5): 1253-1265, 2018 05.
Article in English | MEDLINE | ID: mdl-29727288

ABSTRACT

We introduce a data consistency based retrospective motion correction method, TArgeted Motion Estimation and Reduction (TAMER), to correct for patient motion in Magnetic Resonance Imaging (MRI). Specifically, a motion free image and motion trajectory are jointly estimated by minimizing the data consistency error of a SENSE forward model including rigid-body subject motion. In order to efficiently solve this large non-linear optimization problem, we employ reduced modeling in the parallel imaging formulation by assessing only a subset of target voxels at each step of the motion search. With this strategy we are able to effectively capture the tight coupling between the image voxel values and motion parameters. We demonstrate in simulations TAMER's ability to find similar search directions compared to a full model, with an average error of 22%, vs. 73% error when using previously proposed alternating methods. The reduced model decreased the computation time fold compared to a full image volume evaluation. In phantom experiments, our method successfully mitigates both translation and rotation artifacts, reducing image RMSE compared to a motion-free gold standard from 21% to 14% in a translating phantom, and from 17% to 10% in a rotating phantom. Qualitative image improvements are seen in human imaging of moving subjects compared to conventional reconstruction. Finally, we compare in vivo image results of our method to the state-of-the-art.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Movement/physiology , Adult , Algorithms , Artifacts , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging
4.
IEEE Trans Magn ; 54(1)2018 Jan.
Article in English | MEDLINE | ID: mdl-29749974

ABSTRACT

Permanent magnet arrays offer several attributes attractive for the development of a low-cost portable MRI scanner for brain imaging. They offer the potential for a relatively lightweight, low to mid-field system with no cryogenics, a small fringe field, and no electrical power requirements or heat dissipation needs. The cylindrical Halbach array, however, requires external shimming or mechanical adjustments to produce B0 fields with standard MRI homogeneity levels (e.g., 0.1 ppm over FOV), particularly when constrained or truncated geometries are needed, such as a head-only magnet where the magnet length is constrained by the shoulders. For portable scanners using rotation of the magnet for spatial encoding with generalized projections, the spatial pattern of the field is important since it acts as the encoding field. In either a static or rotating magnet, it will be important to be able to optimize the field pattern of cylindrical Halbach arrays in a way that retains construction simplicity. To achieve this, we present a method for designing an optimized cylindrical Halbach magnet using the genetic algorithm to achieve either homogeneity (for standard MRI applications) or a favorable spatial encoding field pattern (for rotational spatial encoding applications). We compare the chosen designs against a standard, fully populated sparse Halbach design, and evaluate optimized spatial encoding fields using point-spread-function and image simulations. We validate the calculations by comparing to the measured field of a constructed magnet. The experimentally implemented design produced fields in good agreement with the predicted fields, and the genetic algorithm was successful in improving the chosen metrics. For the uniform target field, an order of magnitude homogeneity improvement was achieved compared to the un-optimized, fully populated design. For the rotational encoding design the resolution uniformity is improved by 95% compared to a uniformly populated design.

SELECTION OF CITATIONS
SEARCH DETAIL
...