Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 8: 597847, 2020.
Article in English | MEDLINE | ID: mdl-33195168

ABSTRACT

Vascular tissue engineering is a field of regenerative medicine that restores tissue function to defective sections of the vascular network by bypass or replacement with a tubular, engineered graft. The tissue engineered vascular graft (TEVG) is comprised of a biodegradable scaffold, often combined with cells to prevent acute thrombosis and initiate scaffold remodeling. Cells are most effectively incorporated into scaffolds using bulk seeding techniques. While our group has been successful in uniform, rapid, bulk cell seeding of scaffolds for TEVG testing in small animals using our well-validated rotational vacuum technology, this approach was not directly translatable to large scaffolds, such as those required for large animal testing or human implants. The objective of this study was to develop and validate a semi-automated cell seeding device that allows for uniform, rapid, bulk seeding of large scaffolds for the fabrication of TEVGs appropriately sized for testing in large animals and eventual translation to humans. Validation of our device revealed successful seeding of cells throughout the length of our tubular scaffolds with homogenous longitudinal and circumferential cell distribution. To demonstrate the utility of this device, we implanted a cell seeded scaffold as a carotid interposition graft in a sheep model for 10 weeks. Graft remodeling was demonstrated upon explant analysis using histological staining and mechanical characterization. We conclude from this work that our semi-automated, rotational vacuum seeding device can successfully seed porous tubular scaffolds suitable for implantation in large animals and provides a platform that can be readily adapted for eventual human use.

2.
Acta Biomater ; 105: 146-158, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31958596

ABSTRACT

The success of tissue-engineered vascular graft (TEVG) predominantly relies on the selection of a suitable biomaterial and graft design. Natural biopolymer silk has shown great promise for various tissue-engineering applications. This study is the first to investigate Indian endemic non-mulberry silk (Antheraea assama-AA) - which inherits naturally superior mechanical and biological traits (e.g., RGD motifs) compared to Bombyx mori-BM silk, for TEVG applications. We designed bi-layered biomimetic small diameter AA-BM silk TEVGs adopting a new fabrication methodology. The inner layer showed ideally sized (~40 µm) pores with interconnectivity to allow cellular infiltration, and an outer dense electrospun layer that confers mechanical resilience. Biodegradation of silk TEVGs into amino acids as resorbable byproducts corroborates their in vivo remodeling ability. Following our previous reports, we surgically implanted human adipose tissue-derived stromal vascular fraction (SVF) seeded silk TEVGs in Lewis rats as abdominal aortic interposition grafts for 8 weeks. Adequate suture retention strength (0.45 ± 0.1 N) without any blood seepage post-implantation substantiate the grafts' viability. AA silk-based TEVGs showed superior animal survival and graft patency compared to BM silk TEVGs. Histological analysis revealed neo-tissue formation, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, this study demonstrates promising aspects of AA silk TEVGs for vascular tissue engineering applications. STATEMENT OF SIGNIFICANCE: Clinical 'off the shelf' implementation of tissue-engineered vascular grafts (TEVGs) remains a challenge. Achieving optimal blood vessel regeneration requires the use of bioresorbable materials having suitable degradation rates while producing minimal or no toxic byproducts. Host cell recruitment and preventing acute thrombosis are other pre-requisites for successful graft remodeling. In this study, for the first time we explored the use of naturally derived Indian endemic non-mulberry Antheraea assama silk in combination with Bombyx mori silk for TEVG applications by adopting a new biomimetic approach. Our bi-layered silk TEVGs were optimally porous, mechanically resilient and biodegradable. In vivo implantation in rat aorta showed long-term patency and graft remodeling by host cell infiltration and extracellular matrix deposition corroborating their clinical feasibility.


Subject(s)
Absorbable Implants , Blood Vessel Prosthesis Implantation , Silk/chemistry , Tissue Engineering , Adult , Animals , Cell Proliferation , Extracellular Matrix/metabolism , Female , Humans , Rats, Inbred Lew , Tensile Strength , Tissue Scaffolds/chemistry
3.
J Thorac Cardiovasc Surg ; 156(5): 1814-1822.e3, 2018 11.
Article in English | MEDLINE | ID: mdl-30057192

ABSTRACT

OBJECTIVE: Tissue-engineered vascular grafts containing adipose-derived mesenchymal stem cells offer an alternative to small-diameter vascular grafts currently used in cardiac and lower-extremity revascularization procedures. Adipose-derived, mesenchymal stem cell-infused, tissue-engineered vascular grafts have been shown to promote remodeling and vascular homeostasis in vivo and offer a possible treatment solution for those with cardiovascular disease. Unfortunately, the time needed to cultivate adipose-derived mesenchymal stem cells remains a large hurdle for tissue-engineered vascular grafts as a treatment option. The purpose of this study was to determine if stromal vascular fraction (known to contain progenitor cells) seeded tissue-engineered vascular grafts would remain patent in vivo and remodel, allowing for a "same-day" process for tissue-engineered vascular graft fabrication and implantation. METHODS: Stromal vascular fraction, obtained from adult human adipose tissue, was seeded within 4 hours after acquisition from the patient onto poly(ester urethane)urea bilayered scaffolds using a customized rotational vacuum seeding device. Constructs were then surgically implanted as abdominal aortic interposition grafts in Lewis rats. RESULTS: Findings revealed patency in 5 of 7 implanted scaffolds at 8 weeks, along with neotissue formation and remodeling occurring in patent tissue-engineered vascular grafts. Patency was documented using angiography and gross inspection, and remodeling and vascular components were detected using immunofluorescent chemistry. CONCLUSIONS: A "same-day" cell-seeded, tissue-engineered vascular graft can remain patent after implantation in vivo, with neotissue formation and remodeling occurring by 8 weeks.


Subject(s)
Adipose Tissue/cytology , Aorta, Abdominal/surgery , Bioprosthesis , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Stem Cell Transplantation/instrumentation , Stromal Cells/physiology , Stromal Cells/transplantation , Tissue Engineering/methods , Tissue Scaffolds , Adult , Animals , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Aorta, Abdominal/physiopathology , Biomarkers/metabolism , Cells, Cultured , Feasibility Studies , Female , Humans , Middle Aged , Neointima , Phenotype , Prosthesis Design , Rats, Inbred Lew , Stromal Cells/metabolism , Time Factors , Transplantation, Heterologous , Vascular Patency , Vascular Remodeling , Workflow
4.
Microsc Microanal ; 22(2): 349-60, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26903264

ABSTRACT

Abdominal aortic aneurysm is a multifactorial disease that is a leading cause of death in developed countries. Matrix-metalloproteases (MMPs) are part of the disease process, however, assessing their role in disease initiation and progression has been difficult and animal models have become essential. Combining Förster resonance energy transfer (FRET) proteolytic beacons activated in the presence of MMPs with 2-photon microscopy allows for a novel method of evaluating MMP activity within the extracellular matrix (ECM). Single and 2-photon spectra for proteolytic beacons were determined in vitro. Ex vivo experiments using the apolipoprotein E knockout angiotensin II-infused mouse model of aneurysm imaged ECM architecture simultaneously with the MMP-activated FRET beacons. 2-photon spectra of the two-color proteolytic beacons showed peaks for the individual fluorophores that enable imaging of MMP activity through proteolytic cleavage. Ex vivo imaging of the beacons within the ECM revealed both microstructure and MMP activity. 2-photon imaging of the beacons in aneurysmal tissue showed an increase in proteolytic cleavage within the ECM (p<0.001), thus indicating an increase in MMP activity. Our data suggest that FRET-based proteolytic beacons show promise in assessing MMP activity within the ECM and will therefore allow future studies to identify the heterogeneous distribution of simultaneous ECM remodeling and protease activity in aneurysmal disease.


Subject(s)
Aortic Aneurysm, Abdominal/pathology , Metalloproteases/analysis , Microscopy, Fluorescence/methods , Animals , Disease Models, Animal , Fluorescence Resonance Energy Transfer , Mice
5.
Biomaterials ; 37: 164-73, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25453947

ABSTRACT

A main goal of tissue engineering is the development of scaffolds that replace, restore and improve injured tissue. These scaffolds have to mimic natural tissue, constituted by an extracellular matrix (ECM) support, cells attached to the ECM, and signaling molecules such as growth factors that regulate cell function. In this study we created electrospun flat sheet scaffolds using different compositions of gelatin and fibrinogen. Smooth muscle cells (SMCs) were seeded on the scaffolds, and proliferation and infiltration were evaluated. Additionally, different concentrations of Transforming Growth Factor-beta2 (TGFß2) were added to the medium with the aim of elucidating its effect on cell proliferation, migration and collagen production. Our results demonstrated that a scaffold with a composition of 80% gelatin-20% fibrinogen is suitable for tissue engineering applications since it promotes cell growth and migration. The addition of TGFß2 at low concentrations (≤ 1 ng/ml) to the culture medium resulted in an increase in SMC proliferation and scaffold infiltration, and in the reduction of collagen production. In contrast, TGFß2 at concentrations >1 ng/ml inhibited cell proliferation and migration while stimulating collagen production. According to our results TGFß2 concentration has a differential effect on SMC function and thus can be used as a biochemical modulator that can be beneficial for tissue engineering applications.


Subject(s)
Cell Movement/drug effects , Fibrinogen/pharmacology , Gelatin/pharmacology , Myocytes, Smooth Muscle/cytology , Tissue Engineering/methods , Transforming Growth Factor beta2/pharmacology , Actins/metabolism , Animals , Calcium-Binding Proteins/metabolism , Cattle , Cell Proliferation/drug effects , Cells, Cultured , Microfilament Proteins/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Sus scrofa , Tissue Scaffolds/chemistry , Calponins
6.
J Biomech Eng ; 133(7): 075001, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21823753

ABSTRACT

Murine models of disease are a powerful tool for researchers to gain insight into disease formation, progression, and therapies. The biomechanical indicators of diseased tissue provide a unique insight into some of these murine models, since the biomechanical properties in scenarios such as aneurysm and Marfan syndrome can dictate tissue failure and mortality. Understanding the properties of the tissue on the macroscopic scale has been shown to be important, as one can then understand the tissue's ability to withstand the high stresses seen in the cardiac pulsatile cycle. Alterations in the biomechanical response can foreshadow prospective mechanical failure of the tissue. These alterations are often seen on the microstructural level, and obtaining detailed information on such changes can offer a better understanding of the phenomena seen on the macroscopic level. Unfortunately, mouse models present problems due to the size and delicate features in the mechanical testing of such tissues. In addition, some smaller arteries in large-animal studies (e.g., coronary and cerebral arteries) can present the same issues, and are sometimes unsuitable for planar biaxial testing. The purpose of this paper is to present a robust method for the investigation of the mechanical properties of small arteries and the classification of the microstructural orientation and degree of fiber alignment. This occurs through the cost-efficient modification of a planar biaxial tester that works in conjunction with a two-photon nonlinear microscope. This system provides a means to further investigate how microstructure and mechanical properties are modified in diseased transgenic animals where the tissue is in small tube form. Several other hard-to-test tubular specimens such as cerebral aneurysm arteries and atherosclerotic coronary arteries can also be tested using the described modular device.


Subject(s)
Aorta/cytology , Aorta/physiology , Collagen/physiology , Coronary Vessels/cytology , Coronary Vessels/physiology , Microscopy/instrumentation , Animals , Biomechanical Phenomena , Collagen/ultrastructure , Elastin/metabolism , Elastin/ultrastructure , Equipment Design , Humans , Mice , Microscopy/methods , Microscopy, Fluorescence, Multiphoton/instrumentation , Microscopy, Fluorescence, Multiphoton/methods , Software Design , Stress, Mechanical
7.
J Biomech ; 42(3): 197-201, 2009 Feb 09.
Article in English | MEDLINE | ID: mdl-19058807

ABSTRACT

An intraluminal thrombus (ILT) forms in the majority of abdominal aortic aneurysms (AAAs). While the ILT has traditionally been perceived as a byproduct of aneurysmal disease, the mechanical environment within the ILT may contribute to the degeneration of the aortic wall by affecting biological events of cells embedded within the ILT. In this study, the drained secant modulus (E(5) approximately modulus at 5% strain) of ILT specimens (luminal, medial, and abluminal) procured from elective open repair was measured and compared using unconfined compression. Five groups of fibrin-based thrombus mimics were also synthesized by mixing various combinations of fibrinogen, thrombin, and calcium. Drained secant moduli were compared to determine the effect of the components' concentrations on mimic stiffness. The stiffness of mimics was also compared to the native ILT. Preliminary data on the water content of the ILT layers and mimics was measured. It was found that the abluminal layer (E(5)=19.3kPa) is stiffer than the medial (2.49kPa) and luminal (1.54kPa) layers, both of which are statistically similar. E(5) of the mimics (0.63, 0.22, 0.23, 0.87, and 2.54kPa) is dependent on the concentration of all three components: E(5) decreases with a decrease in fibrinogen (60-20 and 20-15mg/ml) and a decrease in thrombin (3-0.3 units/ml), and E(5) increases with a decrease in calcium (0.1-0.01M). E(5) from two of the mimics were not statistically different than the medial and luminal layers of ILT. A thrombus mimic with similar biochemical components, structure, and mechanical properties as native ILT would provide an appropriate test medium for AAA mechanobiology studies.


Subject(s)
Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/physiopathology , Thrombosis/pathology , Thrombosis/physiopathology , Aged , Aged, 80 and over , Aortic Rupture/physiopathology , Endothelium, Vascular , Extracellular Space/metabolism , Female , Fibrin/chemistry , Humans , Male , Microscopy, Electron, Scanning , Middle Aged , Molecular Mimicry , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...