Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Surg Endosc ; 35(4): 1610-1617, 2021 04.
Article in English | MEDLINE | ID: mdl-32253555

ABSTRACT

BACKGROUND: Minimally invasive endopancreatic surgery (EPS), performing a pancreatic resection from inside the pancreatic duct, has been proposed as an experimental alternative to duodenum-preserving pancreatic head resection in benign diseases such as chronic pancreatitis, but is complicated by difficult spatial orientation when trying to reach structures of interest. This study assessed the feasibility and potential benefits of image-guided EPS using a computer-assisted navigation system in artificial pancreas silicon model. METHODS: A surgical navigation system displayed a 3D reconstruction of the original computed tomography (CT) scan and the endoscope in relation to a selected target structure. In a first step, different surface landmark (LM)-based and intraparenchymal LM-based approaches for image-to-physical space registration were evaluated. The accuracy of registration was measured as fiducial registration error (FRE). Subsequently, intrapancreatic lesions (n = 8) that were visible on preoperative imaging, but not on the endoscopic view, were targeted with a computer-assisted, image-guided endopancreatic resection technique in pancreas silicon models. After each experiment, a CT scan was obtained for measurement of the shortest distance from the resection cavity to the centre of the lesion. RESULTS: Intraparenchymal LM registration [FRE 2.24 mm (1.40-2.85)] was more accurate than surface LM registration [FRE 3.46 mm (2.25-4.85); p = 0.035], but not more accurate than combined registration of intraparenchymal and surface LM [FRE 2.46 mm (1.60-3.35); p = 0.052]. Using image-guided EPS, six of seven lesions were successfully targeted. The median distance from the resection cavity to the centre of the lesion on CT was 1.52 mm (0-2.4). In one pancreas, a lesion could not be resected due to the fragility of the pancreas model. CONCLUSION: Image-guided minimally invasive EPS using a computer-assisted navigation system enabled successful targeting of pancreatic lesions that were invisible on the endoscopic image, but detectable on preoperative imaging. In the clinical setting, this tool could facilitate complex minimally invasive and robotic pancreatic procedures.


Subject(s)
Endoscopy/methods , Image Processing, Computer-Assisted/methods , Minimally Invasive Surgical Procedures/methods , Pancreatectomy/methods , Surgery, Computer-Assisted/methods , Female , Humans , Male
2.
IEEE Open J Eng Med Biol ; 1: 166-173, 2020.
Article in English | MEDLINE | ID: mdl-35402946

ABSTRACT

Training of surgical residents and the establishment of innovative surgical techniques require training phantoms that realistically mimic human anatomy. Because animal models have their limitations due to ethical aspects, costs, and the required efforts to set up such training, artificial phantoms are a promising alternative. In the field of image-guided surgery, the challenge lies in developing phantoms that are accurate both anatomically and in terms of imaging properties, while taking the cost factor into account. With respect to the pancreas, animal models are less suitable because their anatomy differs significantly from human anatomy and tissue properties rapidly degrade in the case of ex vivo models. Nevertheless, progress with artificial phantoms has been sparse, although the need for innovative, minimally invasive therapies that require adequate training is steadily increasing. Methods: In the course of this project, an artificial pancreas phantom that is compatible with basic electrosurgical techniques was developed with realistic anatomic and haptic properties, computed tomography, and ultrasound imaging capabilities. This article contains step-by-step instructions for the fabrication of a low-cost pancreatic phantom. The molds are also available for download in a 3D file format. Results: The phantom was successfully validated with regard to its computed tomography and ultrasound properties. As a result, the phantom could be used in combination with a state-of-the-art computer-assisted navigation system. The resection capabilities were positively evaluated in a preclinical study evaluating endoscopic resections using the navigation system. Finally, the durability of the phantom material was tested in a study with multiple needle insertions. Conclusion: The developed phantom represents an open-access and low-cost durable alternative to conventional animal models in the continuous process of surgical training and development of new techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...