Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 37(8): 1127-1143, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29789886

ABSTRACT

KEY MESSAGE: TAAAAT and a novel motif, GCTTCA found in the oil palm stearoyl-ACP desaturase (SAD1) promoter are involved in regulating mesocarp-specific expression. Two key fatty acid biosynthetic genes, stearoyl-ACP desaturase (SAD1), and acyl-carrier protein (ACP3) in Elaeis guineensis (oil palm) showed high level of expression during the period of oil synthesis in the mesocarp [12-19 weeks after anthesis (w.a.a.)] and kernel (12-15 w.a.a.). Both genes are expressed in spear leaves at much lower levels and the expression increased by 1.5-fold to 2.5-fold following treatments with ethylene and abscisic acid (ABA). Both SAD1 and ACP3 promoters contain phytohormone-responsive, light-responsive, abiotic factors/wounding-responsive, endosperm specificity and fruit maturation/ripening regulatory motifs. The activities of the full length and six 5' deletion fragments of the SAD1 promoter were analyzed in transiently transformed oil palm tissues by quantitative ß-glucuronidase (GUS) fluorometric assay. The highest SAD1 promoter activity was observed in the mesocarp followed by kernel and the least in the leaves. GUS activity in the D3 deletion construct (- 486 to + 108) was the highest, while the D2 (- 535 to + 108) gave the lowest suggesting the presence of negative cis-acting regulatory element(s) in the deleted - 535 to - 486 (49 bp). It was found that the 49-bp region binds to the nuclear protein extract from mesocarp but not from leaves in electrophoretic mobility shift assay (EMSA). Further fine-tuned analysis of this 49-bp region using truncated DNA led to the identification of GCTTCA as a novel motif in the SAD1 promoter. Interestingly, another known fruit ripening-related motif, LECPLEACS2 (TAAAAT) was found to be required for effective binding of the novel motif to the mesocarp nuclear protein extract.


Subject(s)
Arecaceae/enzymology , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Abscisic Acid/pharmacology , Amino Acid Motifs , Arecaceae/metabolism , Ethylenes/pharmacology , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...