Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 9(1): 146, 2021 08 28.
Article in English | MEDLINE | ID: mdl-34454615

ABSTRACT

Synucleinopathies, including Parkinson's disease (PD), Lewy body dementia (LBD), Alzheimer's disease with amygdala restricted Lewy bodies (AD/ALB), and multiple system atrophy (MSA) comprise a spectrum of neurodegenerative disorders characterized by the presence of distinct pathological α-synuclein (αSyn) inclusions. Experimental and pathological studies support the notion that αSyn aggregates contribute to cellular demise and dysfunction with disease progression associated with a prion-like spread of αSyn aggregates via conformational templating. The initiating event(s) and factors that contribute to diverse forms of synucleinopathies remain poorly understood. A major post-translational modification of αSyn associated with pathological inclusions is a diverse array of specific truncations within the carboxy terminal region. While these modifications have been shown experimentally to induce and promote αSyn aggregation, little is known about their disease-, region- and cell type specific distribution. To this end, we generated a series of monoclonal antibodies specific to neo-epitopes in αSyn truncated after residues 103, 115, 119, 122, 125, and 129. Immunocytochemical investigations using these new tools revealed striking differences in the αSyn truncation pattern between different synucleinopathies, brain regions and specific cellular populations. In LBD, neuronal inclusions in the substantia nigra and amygdala were positive for αSyn cleaved after residues 103, 119, 122, and 125, but not 115. In contrast, in the same patients' brain αSyn cleaved at residue 115, as well as 103, 119 and 122 were abundant in the dorsal motor nucleus of the vagus. In patients with AD/ALB, these modifications were only weakly or not detected in amygdala αSyn inclusions. αSyn truncated at residues 103, 115, 119, and 125 was readily present in MSA glial cytoplasmic inclusions, but 122 cleaved αSyn was only weakly or not present. Conversely, MSA neuronal pathology in the pontine nuclei was strongly reactive to the αSyn x-122 neo-epitope but did not display any reactivity for αSyn 103 cleavage. These studies demonstrate significant disease-, region- and cell type specific differences in carboxy terminal αSyn processing associated with pathological inclusions that likely contributes to their distinct strain-like prion properties and promotes the diversity displayed in the degrees of these insidious diseases.


Subject(s)
Alzheimer Disease/metabolism , Antibodies, Monoclonal/metabolism , Lewy Body Disease/metabolism , Multiple System Atrophy/metabolism , Synucleinopathies/metabolism , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amygdala/metabolism , Amygdala/pathology , Antibodies, Monoclonal/chemistry , Epitopes/chemistry , Epitopes/metabolism , Female , Humans , Lewy Body Disease/pathology , Male , Middle Aged , Multiple System Atrophy/pathology , Synucleinopathies/pathology , Temporal Lobe/metabolism , Temporal Lobe/pathology , alpha-Synuclein/chemistry
2.
Acta Neuropathol Commun ; 9(1): 80, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33941284

ABSTRACT

Multiple system atrophy (MSA) is an insidious middle age-onset neurodegenerative disease that clinically presents with variable degrees of parkinsonism and cerebellar ataxia. The pathological hallmark of MSA is the progressive accumulation of glial cytoplasmic inclusions (GCIs) in oligodendrocytes that are comprised of α-synuclein (αSyn) aberrantly polymerized into fibrils. Experimentally, MSA brain samples display a high level of seeding activity to induce further αSyn aggregation by a prion-like conformational mechanism. Paradoxically, αSyn is predominantly a neuronal brain protein, with only marginal levels expressed in normal or diseased oligodendrocytes, and αSyn inclusions in other neurodegenerative diseases, including Parkinson's disease and Dementia with Lewy bodies, are primarily found in neurons. Although GCIs are the hallmark of MSA, using a series of new monoclonal antibodies targeting the carboxy-terminal region of αSyn, we demonstrate that neuronal αSyn pathology in MSA patient brains is remarkably abundant in the pontine nuclei and medullary inferior olivary nucleus. This neuronal αSyn pathology has distinct histological properties compared to GCIs, which allows it to remain concealed to many routine detection methods associated with altered biochemical properties of the carboxy-terminal domain of αSyn. We propose that these previously underappreciated sources of aberrant αSyn could serve as a pool of αSyn prion seeds that can initiate and continue to drive the pathogenesis of MSA.


Subject(s)
Brain Stem/chemistry , Brain Stem/pathology , Multiple System Atrophy/pathology , Neurons/chemistry , Neurons/pathology , alpha-Synuclein/analysis , Aged , Aged, 80 and over , Animals , Brain Stem/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Multiple System Atrophy/metabolism , Neurons/metabolism , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...