Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 23(1): 173, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391715

ABSTRACT

BACKGROUND: The emergence of different viral infections calls for the development of new, effective, and safe antiviral drugs. Glycyrrhiza glabra is a well-known herbal remedy possessing antiviral properties. OBJECTIVE: The objective of our research was to evaluate the effectiveness of a newly developed combination of the probiotics Lactobacillus acidophilus and G. glabra root extract against two viral models, namely the DNA virus Herpes simplex virus-1 (HSV-1) and the RNA virus Vesicular Stomatitis Virus (VSV), with regards to their antiviral properties. METHODOLOGY: To examine the antiviral impacts of various treatments, we employed the MTT assay and real-time PCR methodology. RESULTS: The findings of our study indicate that the co-administration of L. acidophilus and G. glabra resulted in a significant improvement in the survival rate of Vero cells, while also leading to a reduction in the titers of Herpes Simplex Virus Type 1 (HSV-1) and Vesicular Stomatitis Virus (VSV) in comparison to cells that were not treated. Additionally, an investigation was conducted on glycyrrhizin, the primary constituent of G. glabra extract, utilizing molecular docking techniques. The results indicated that glycyrrhizin exhibited a greater binding energy score for HSV-1 polymerase (- 22.45 kcal/mol) and VSV nucleocapsid (- 19.77 kcal/mol) in comparison to the cocrystallized ligand (- 13.31 and - 11.44 kcal/mol, respectively). CONCLUSIONS: The combination of L. acidophilus and G. glabra extract can be used to develop a new, natural antiviral agent that is safe and effective.


Subject(s)
Glycyrrhiza , Herpes Simplex , Herpesvirus 1, Human , Probiotics , Vesicular Stomatitis , Chlorocebus aethiops , Animals , Lactobacillus acidophilus , Antiviral Agents/pharmacology , Glycyrrhizic Acid , Molecular Docking Simulation , Vero Cells , Plant Extracts/pharmacology
2.
Molecules ; 28(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049756

ABSTRACT

Glycyrrhiza glabra and Sophora japonica (Fabaceae) are well-known medicinal plants with valuable secondary metabolites and pharmacological properties. The flavonoid-rich fractions of G. glabra roots and S. japonica leaves were prepared using Diaion column chromatography, and the confirmation of flavonoid richness was confirmed using UPLC-ESI-MS profiling and total phenolics and flavonoids assays. UPLC-ESI-MS profiling of the flavonoid-rich fraction of G. glabra roots and S. japonica leaves resulted in the tentative identification of 32 and 23 compounds, respectively. Additionally, the wound healing potential of topical preparations of each fraction, individually and in combination (1:1) ointment and gel preparations, were investigated in vivo, supported by histopathological examinations and biomarker evaluations, as well as molecular docking studies for the major constituents. The topical application of G. glabra ointment and gel, S. japonica ointment and gel and combination preparations significantly increase the wound healing rate and the reduction of oxidative stress in the wound area via MDA reduction and the elevation of reduced GSH and SOD levels as compared to the wound and Nolaver®-treated groups. The molecular docking study revealed that that major compounds in G. glabra and S. japonica can efficiently bind to the active sites of three proteins related to wound healing: glycogen synthase kinase 3-ß (GSK3-ß), matrix metalloproteinases-8 (MMP-8) and nitric oxide synthase (iNOS). Consequently, G. glabra roots and S. japonica leaves may be a rich source of bioactive metabolites with antioxidant, anti-inflammatory and wound healing properties.


Subject(s)
Flavonoids , Glycyrrhiza , Flavonoids/pharmacology , Flavonoids/analysis , Sophora japonica , Molecular Docking Simulation , Glycogen Synthase Kinase 3 , Ointments , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glycyrrhiza/chemistry , Wound Healing
3.
Front Pharmacol ; 13: 879118, 2022.
Article in English | MEDLINE | ID: mdl-35496299

ABSTRACT

Beginning from December 2019, widespread COVID-19 has caused huge financial misfortunes and exceptional wellbeing emergencies across the globe. Discovering an effective and safe drug candidate for the treatment of COVID-19 and its associated symptoms became an urgent global demand, especially due to restricted information that has been discharged with respect to vaccine efficacy and safety in humans. Reviewing the recent research, olive leaves were selected as a potential co-therapy supplement for the treatment and improvement of clinical manifestations in COVID-19 patients. Olive leaves were reported to be rich in phenolic compounds such as oleuropein, hydroxytyrosol, verbascoside, apigenin-7-O-glucoside, and luteolin-7-O-glucoside and also triterpenoids such as maslinic, ursolic, and oleanolic acids that have been reported as anti-SARS-CoV-2 metabolites in recent computational and in vitro studies. In addition, olive leaf extract was previously reported in several in vivo studies for its anti-inflammatory, analgesic, antipyretic, immunomodulatory, and antithrombotic activities which are of great benefit in the control of associated inflammatory cytokine storm and disseminated intravascular coagulation in COVID-19 patients. In conclusion, the described biological activities of olive leaves alongside their biosafety, availability, and low price make them a potential candidate drug or supplement to control COVID-19 infection and are recommended for clinical investigation.

4.
Drug Deliv ; 29(1): 1100-1111, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35373684

ABSTRACT

The current investigation aimed for loading fenticonazole nitrate (FTN), an antifungal agent with low aqueous solubility, into trans-novasomes (TNs) for management of tinea corporis topically. TNs contain Brij® as an edge activator besides the components of novasomes (cholesterol, Span 60, and oleic acid) owing to augment the topical delivery of FTN. TNs were fabricated applying ethanol injection method based on D-optimal experiment. TNs were evaluated with regard to entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). Further explorations were conducted on the optimum formulation (F7). F7 showed spherical appearance with EE%, PS, PDI, and ZP of 100.00 ± 1.10%, 358.60 ± 10.76 nm, 0.51 ± 0.004, and -30.00 ± 0.80 mV, respectively. The in silico study revealed the ability of the FTN-cholesterol complex to maintain favorable interactions throughout the molecular dynamics simulation (MDS) study. Moreover, Trichophyton mentagrophytes growth was inhibited effectively by F7 than by FTN suspension applying 2,3-bis(2-methyloxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay. Furthermore, a clinical appraisal on patients with tinea corporis fungal lesions confirmed the superiority of F7 compared to Miconaz® cream in the magnitude of clinical cure of tinea corporis. Thereby, TNs could be considered as promising vesicles for enhancing the antifungal potential of FTN for the topical management of tinea corporis.


Subject(s)
Nitrates , Tinea , Antifungal Agents , Humans , Imidazoles , Tinea/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...