Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 24(5): 1081-1085, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28663708

ABSTRACT

Hemolymph osmolarity has great effect on honey bee health, especially in arid and semi-arid zones. It regulates water and nutrients in stressed tissues. Osmotic concentration in three races (Apis mellifera ligustica, A. m. carnica and A. m. jemenitica) of Apis mellifera was tested in central Saudi Arabia during spring and summer seasons in 2015. Newly emerged bee workers were first marked and later their hemolymph was extracted after intervals of 1, 5, 10, 15, 20 and 25 days. A significant positive correlation between age and osmolarity was found in all three races during spring and summer seasons. The lowest combined osmotic concentration for all three races was found after 1 day interval, while the highest osmotic concentration was recorded after 25 days. Among all races, A. m. ligustica showed significantly high osmotic concentration after 25 days in spring and summer seasons as compared to the other two races. Only A. m. jemenitica showed similar osmotic concentration after 10 and 15 days in both spring and summer seasons compared to other two races. Mean osmotic concentration of all three races was significantly different after 20 and 25 days in spring and summer seasons. Overall mean recorded during summer was significantly higher than the mean of spring season. Combined osmotic concentration in young drones of all races was significantly lower than that of old drones during spring and summer seasons.

2.
Saudi J Biol Sci ; 24(7): 1470-1474, 2017 Nov.
Article in English | MEDLINE | ID: mdl-30174491

ABSTRACT

Nectar is used as raw material for the production of honey and as significant reward in the relationship between bees and plants during pollination. Therefore, it is important to investigate its abundance, dynamics and associated governing factors. Weather conditions are known to influence nectar production, and predicted climate changes may be responsible for future declining in total yield from beekeeping activities. We investigated nectar production as total soluble solids (TSS) of well-known species for honey production, Ziziphus nummularia in a hot-arid environment of Saudi Arabia. Data on nectar samples from bagged flowers of different stages during two blooming seasons, 2013 and 2015 were collected on weekly bases, and the data were correlated with weather conditions (temperature, relative humidity, and wind). A significant difference in TSS amount has been obtained, with 1-day old flowers displaying the higher content. TSS production was varied along the different day intervals, for both years, with a peak of production in the afternoon. In our results, nectar production was not correlated to temperature and wind, but was significantly negatively correlated with relative humidity. According to the current and future weather forecasting conditions, understanding of the relationship between weather conditions and nectar availability turned out to be important predictive information that may be interpreted into an economic projection of incomes from beekeeping activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...