Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37571774

ABSTRACT

Cell-free massive multiple-input multiple-output (MIMO) systems have the potential of providing joint services, including joint initial access, efficient clustering of access points (APs), and pilot allocation to user equipment (UEs) over large coverage areas with reduced interference. In cell-free massive MIMO, a large coverage area corresponds to the provision and maintenance of the scalable quality of service requirements for an infinitely large number of UEs. The research in cell-free massive MIMO is mostly focused on time division duplex mode due to the availability of channel reciprocity which aids in avoiding feedback overhead. However, the frequency division duplex (FDD) protocol still dominates the current wireless standards, and the provision of angle reciprocity aids in reducing this overhead. The challenge of providing a scalable cell-free massive MIMO system in an FDD setting is also prevalent, since computational complexity regarding signal processing tasks, such as channel estimation, precoding/combining, and power allocation, becomes prohibitively high with an increase in the number of UEs. In this work, we consider an FDD-based scalable cell-free network with angular reciprocity and a dynamic cooperation clustering approach. We have proposed scalability for our FDD cell-free and performed a comparative analysis with reference to channel estimation, power allocation, and precoding/combining techniques. We present expressions for scalable spectral efficiency, angle-based precoding/combining schemes and provide a comparison of overhead between conventional and scalable angle-based estimation as well as combining schemes. Simulations confirm that the proposed scalable cell-free network based on an FDD scheme outperforms the conventional matched filtering scheme based on scalable precoding/combining schemes. The angle-based LP-MMSE in the FDD cell-free network provides 14.3% improvement in spectral efficiency and 11.11% improvement in energy efficiency compared to the scalable MF scheme.

2.
New Phytol ; 238(1): 367-382, 2023 04.
Article in English | MEDLINE | ID: mdl-36522832

ABSTRACT

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ascomycota , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Disease Resistance , Ascomycota/physiology , Plant Diseases/microbiology
3.
Rice (N Y) ; 15(1): 40, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35876915

ABSTRACT

Flower opening and stigma exertion are two critical traits for cross-pollination during seed production of hybrid rice (Oryza sativa L.). In this study, we demonstrate that the miR167d-ARFs module regulates stigma size and flower opening that is associated with the elongation of stamen filaments and the cell arrangement of lodicules. The overexpression of miR167d (OX167d) resulted in failed elongation of stamen filaments, increased stigma size, and morphological alteration of lodicule, resulting in cleistogamy. Blocking miR167d by target mimicry also led to a morphological alteration of the individual floral organs, including a reduction in stigma size and alteration of lodicule cell morphology, but did not show the cleistogamous phenotype. In addition, the four target genes of miR167d, namely ARF6, ARF12, ARF17, and ARF25, have overlapping functions in flower opening and stigma size. The loss-of-function of a single ARF gene did not influence the flower opening and stigma size, but arf12 single mutant showed a reduced plant height and aborted apical spikelets. However, mutation in ARF12 together with mutation in either ARF6, ARF17, or ARF25 led to the same defective phenotypes that were observed in OX167d, including the failed elongation of stamen filaments, increased stigma size, and morphological alteration of lodicule. These findings indicate that the appropriate expression of miR167d is crucial and the miR167d-ARFs module plays important roles in the regulation of flower opening and stigma size in rice.

4.
Int J Mol Sci ; 22(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34576244

ABSTRACT

Drought stress causes heavy damages to crop growth and productivity under global climatic changes. Transcription factors have been extensively studied in many crops to play important roles in plant growth and defense. However, there is a scarcity of studies regarding WRKY transcription factors regulating drought responses in maize crops. Previously, ZmWRKY79 was identified as the regulator of maize phytoalexin biosynthesis with inducible expression under different elicitation. Here, we elucidated the function of ZmWRKY79 in drought stress through regulating ABA biosynthesis. The overexpression of ZmWRKY79 in Arabidopsis improved the survival rate under drought stress, which was accompanied by more lateral roots, lower stomatal aperture, and water loss. ROS scavenging was also boosted by ZmWRKY79 to result in less H2O2 and MDA accumulation and increased antioxidant enzyme activities. Further analysis detected more ABA production in ZmWRKY79 overexpression lines under drought stress, which was consistent with up-regulated ABA biosynthetic gene expression by RNA-seq analysis. ZmWRKY79 was observed to target ZmAAO3 genes in maize protoplast through acting on the specific W-boxes of the corresponding gene promoters. Virus-induced gene silencing of ZmWRKY79 in maize resulted in compromised drought tolerance with more H2O2 accumulation and weaker root system architecture. Together, this study substantiates the role of ZmWRKY79 in the drought-tolerance mechanism through regulating ABA biosynthesis, suggesting its broad functions not only as the regulator in phytoalexin biosynthesis against pathogen infection but also playing the positive role in abiotic stress response, which provides a WRKY candidate gene to improve drought tolerance for maize and other crop plants.


Subject(s)
Abscisic Acid/metabolism , Droughts , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Zea mays/metabolism , Antioxidants/metabolism , Arabidopsis , Gene Silencing , Phylogeny , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Roots , Plant Stomata , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , RNA-Seq , Sesquiterpenes/metabolism , Stress, Physiological/genetics , Transcriptome , Phytoalexins
SELECTION OF CITATIONS
SEARCH DETAIL
...