Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 1660, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712587

ABSTRACT

In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin-angiotensin-aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.


Subject(s)
COVID-19/genetics , COVID-19/virology , SARS-CoV-2/genetics , Adult , Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Drug Interactions , Female , Gene Expression Profiling , Genome, Viral , HLA Antigens/genetics , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Humans , Male , Middle Aged , Molecular Diagnostic Techniques , New York City/epidemiology , Nucleic Acid Amplification Techniques , Pandemics , RNA-Seq , SARS-CoV-2/classification , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
2.
Nat Biotechnol ; 38(2): 233-244, 2020 02.
Article in English | MEDLINE | ID: mdl-31907405

ABSTRACT

Despite the global rapid increase in the number of clinical trials employing chimeric antigen receptors (CARs), no comprehensive survey of their scope, targets and design exists. In this study, we present an interactive CAR clinical trial database, spanning 64 targets deployed in T cells (CAR-T), natural killer cells (CAR-NK) or mixtures (CAR-NK/T) from over 500 clinical trials in 20 countries, encompassing >20,000 patients. By combining these data with transcriptional and proteomic data, we create a 'targetable landscape' for CAR cell therapies based on 13,206 proteins and RNAs across 78 tissues, 124 cell types and 20 cancer types. These data suggest a landscape of over 100 single targets and over 100,000 target pairs using logical switches for CAR cell engineering. Our analysis of the CAR cellular therapeutic landscape may aid the design of future therapies, improve target-to-patient matching, and ultimately help inform our understanding of CAR therapy's safety and efficacy.


Subject(s)
Cell Engineering/methods , Receptors, Chimeric Antigen/metabolism , Cell- and Tissue-Based Therapy , Clinical Trials as Topic , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Neoplasms/metabolism
3.
Front Genet ; 10: 133, 2019.
Article in English | MEDLINE | ID: mdl-30881380

ABSTRACT

Leukemia, specifically acute myeloid leukemia (AML), is a common malignancy that can be differentiated into multiple subtypes based on leukemogenic history and etiology. Although genetic aberrations, particularly cytogenetic abnormalities and mutations in known oncogenes, play an integral role in AML development, epigenetic processes have been shown as a significant and sometimes independent dynamic in AML pathophysiology. Here, we summarize how tumors evolve and describe AML through an epigenetic lens, including discussions on recent discoveries that include prognostics from epialleles, changes in RNA function for hematopoietic stem cells and the epitranscriptome, and novel epigenetic treatment options. We further describe the limitations of treatment in the context of the high degree of heterogeneity that characterizes acute myeloid leukemia.

4.
Exp Hematol ; 54: 26-30, 2017 10.
Article in English | MEDLINE | ID: mdl-28705639

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with an exceedingly poor prognosis: a 5-year overall survival rate of 40%-45% in the young and a 5-year survival rate of less than 10% in the elderly (>60 years of age). Although a high percentage of patients enters complete remission after chemotherapeutic intervention, the majority of patients relapse within 3 years. Such stark prognostic outcomes highlight the need for additional clinical research, basic discovery, and molecular delineation of the etiologies and mechanisms behind responses to therapy that lead to relapse. Here, we summarize recent discoveries in tumor heterogeneity at the genetic and epigenetic levels and their independent molecular trajectories and dynamics in response to therapy. These new discoveries may have significant implications for understanding, monitoring, and treating leukemia and other cancers.


Subject(s)
Chromosome Aberrations , Epigenesis, Genetic , Gene Expression Regulation, Leukemic , Genetic Heterogeneity , Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/genetics , Age Factors , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Mutation , Neoplasm Proteins/metabolism , Prognosis , Recurrence , Remission Induction , Single-Cell Analysis , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...