Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13610, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871751

ABSTRACT

Natural products play a significant role in providing the current demand as antiparasitic agents, which offer an attractive approach for the discovery of novel drugs. The present study aimed to evaluate in vitro the potential impact of seaweed Padina pavonica (P. pavonica) extract in combating Acanthamoeba castellanii (A. castellanii). The phytochemical constituents of the extract were characterized by Gas chromatography-mass spectrometry. Six concentrations of the algal extract were used to evaluate its antiprotozoal activity at various incubation periods. Our results showed that the extract has significant inhibition against trophozoites and cysts viability, with complete inhibition at the high concentrations. The IC50 of P. pavonica extract was 4.56 and 4.89 µg/mL for trophozoites and cysts, respectively, at 24 h. Morphological alterations of A. castellanii trophozoites/cysts treated with the extract were assessed using inverted and scanning electron microscopes and showed severe damage features upon treatment with the extract at different concentrations. Molecular Docking of extracted compounds against Acanthamoeba cytochrome P450 monooxygenase (AcCYP51) was performed using Autodock vina1.5.6. A pharmacokinetic study using SwissADME was also conducted to investigate the potentiality of the identified bioactive compounds from Padina extract to be orally active drug candidates. In conclusion, this study highlights the in vitro amoebicidal activity of P. pavonica extract against A. castellanii adults and cysts and suggests potential AcCYP51 inhibition.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Molecular Docking Simulation , Plant Extracts , Acanthamoeba castellanii/drug effects , Acanthamoeba Keratitis/drug therapy , Acanthamoeba Keratitis/parasitology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Trophozoites/drug effects , Animals , Humans
2.
PLoS One ; 16(11): e0259847, 2021.
Article in English | MEDLINE | ID: mdl-34780533

ABSTRACT

BACKGROUND: Acanthamoeba spp. are one of the free-living amoeba that spread worldwide causing keratitis. Owing to the increase in the use of lenses, whether for medical or cosmetic purposes, the incidence of disease increases every year. Contamination of the lenses with the Acanthamoeba trophozoites or cysts may lead to eye infection and cause sight-threatening keratitis in human. We isolated Acanthamoeba spp. from new lenses, used lenses, and contact lens disinfecting solutions and identified them based on morphological characteristics and molecular test. METHODS: New and used lenses and contact lens disinfecting solutions were cultured on monogenic media. Light and scanning electron microscope was used to identify Acanthamoeba spp. morphological features. Genotype identification was also evaluated using PCR sequencing of 18S rRNA gene specific primer pair JDP1 and JDP2. RESULTS: A hundred samples were examined, 29 (29%) were infected with Acanthamoeba spp. That belonged to two strains of Acanthamoeba (Acanthamoeba 41 and Acanthamoeba 68). 18S rRNA of the Acanthamoeba 41 had 99.69% sequence identity to Acanthamoeba castellanii clone HDU-JUMS-2, whereas Acanthamoeba 68 had 99.74% similar pattern to that of Acanthamoeba sp. isolate T4 clone ac2t4 that are morphologically identified as Acanthamoeba polyphaga. The obtained data revealed that the isolated strains belong to T4 genotype that was evolutionarily similar to strains isolated in Iran. CONCLUSIONS: Cosmetic lenses and disinfectant solutions are a major transmissible mode for infection. This genotype is common as the cause of Acanthamoeba keratitis. To avoid infection, care must be taken to clean the lenses and their preservative solutions and prevent contamination with the parasite.


Subject(s)
Acanthamoeba/classification , Contact Lens Solutions/analysis , Contact Lenses/parasitology , Sequence Analysis, DNA/methods , Acanthamoeba/genetics , Acanthamoeba/isolation & purification , Cosmetics , DNA, Ribosomal/genetics , Drug Contamination , Egypt , Humans , Iran , Microscopy , Microscopy, Electron, Scanning , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 18S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...