Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Viruses ; 14(2)2022 02 17.
Article in English | MEDLINE | ID: mdl-35216008

ABSTRACT

Avian influenza virus (AIV) variants emerge frequently, which challenges rapid diagnosis. Appropriate diagnosis reaching the sub- and pathotype level is the basis of combatting notifiable AIV infections. Real-time RT-PCR (RT-qPCR) has become a standard diagnostic tool. Here, a total of 24 arrayed RT-qPCRs is introduced for full subtyping of 16 hemagglutinin and nine neuraminidase subtypes of AIV. This array, designated Riems Influenza A Typing Array version 2 (RITA-2), represents an updated and economized version of the RITA-1 array previously published by Hoffmann et al. RITA-2 provides improved integration of assays (24 instead of 32 parallel reactions) and reduced assay volume (12.5 µL). The technique also adds RT-qPCRs to detect Newcastle Disease (NDV) and Infectious Bronchitis viruses (IBV). In addition, it maximizes inclusivity (all sequences within one subtype) and exclusivity (no intersubtypic cross-reactions) as shown in validation runs using a panel of 428 AIV reference isolates, 15 reference samples each of NDV and IBV, and 122 clinical samples. The open format of RITA-2 is particularly tailored to subtyping influenza A virus of avian hosts and Eurasian geographic origin. Decoupling and re-arranging selected RT-qPCRs to detect specific AIV variants causing epizootic outbreaks with a temporal and/or geographic restriction is possible.


Subject(s)
Infectious bronchitis virus/genetics , Influenza A virus/genetics , Newcastle disease virus/genetics , Real-Time Polymerase Chain Reaction/methods , Animals , Birds/virology , Equidae/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Infectious bronchitis virus/isolation & purification , Influenza A virus/classification , Influenza A virus/isolation & purification , Neuraminidase/genetics , Newcastle disease virus/isolation & purification , Sensitivity and Specificity , Swine/virology
2.
Microb Pathog ; 163: 105410, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35041974

ABSTRACT

Infectious bronchitis virus (IBV) is one of the major respiratory diseases of broiler causing huge economic losses. The inability to control IBV using different vaccination programs owing to the high mutation rate and recombination ability of the RNA genome generates IBV variants. This study was designed to give a specific perspective of carvacrol effect on early immune response, viral shedding titer, oxidative stress, serum biochemical parameters and clinical consequences in broilers experimentally infected by IBV. One hundred and twenty-one-day old commercial broiler chicks were equally divided into 4 groups. First group was considered as control. Second group was given carvacrol, third group was infected with IBV and fourth group was given carvacrol and infected with IBV. Infection with variant IBV induced significant upregulation of chicken interferon-inducible transmembrane protein 3 (chIFITM3) gene in trachea, elevations in serum levels of Alpha-1 acid glycoprotein (α1-AGP) and Interleukin 6 (IL-6), total leucocytic count (TLC), heterophil/lymphocyte (H/L) ratio and oxidative stress in lung and kidney tissues. Beside, histopathological changes in trachea, lung and kidney induced by IBV, elevation of kidney function tests was detected. The pretreatment with carvacrol significantly reduced viral shedding titer, chIFITM3 gene expression, IL-6 and α1-AGP levels, leucocytic response and H/L ratio with minimization of clinical signs intensity. Also, carvacrol relieved oxidative stress, ameliorated the increased uric acid level and histopathological alterations in kidney and lung caused by viral infection.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Acute-Phase Reaction , Animals , Chickens , Coronavirus Infections/veterinary , Cymenes , Virus Shedding
3.
Animals (Basel) ; 11(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34827914

ABSTRACT

Infectious bronchitis virus GI-23 lineage, although described approximately two decades ago in the Middle East, has recently drawn remarkable attention and is considered an "emerging" lineage due to its current spread to several other regions, including Europe. Despite the relevance, no comprehensive studies are available investigating its epidemiologic and evolutionary pattern. The present phylodynamic study was designed to fill this gap, benefitting from a collection of freely available GI-23 sequences and ad-hoc generated European ones. After a relatively ancient origin in the Middle East, likely in the first half of the previous century, GI-23 circulated largely undetected or underdiagnosed for a long time in this region, likely causing little damage, potentially because of low virulence coupled with limited development of avian industry in the considered years and regions and insufficient diagnostic activity. The following development of the poultry industry and spread to other countries led to a progressive but slow increase of viral population size between the late '90s and 2010. An increase in viral virulence could also be hypothesized. Of note, a big recombinant cluster, likely originating in the Middle East but spreading thereafter, especially to Europe through Turkey, demonstrated a much-marked increase in viral population size compared to previously circulating variants. The extensive available GI-23 sequence datasets allowed to demonstrate several potential epidemiological links among African, Asian, and European countries, not described for other IBV lineages. However, differently from previously investigated IBV lineages, its spread appears to primarily involve neighbouring countries and those with strong economic and political relationships. It could thus be speculated that frequent effective contacts among locations are necessary for efficient strain transmission. Some countries appear to play a major role as a "bridge" among less related locations, being Turkey the most relevant example. The role of vaccination in controlling the viral population was also tentatively evaluated. However, despite some evidence suggesting such an effect, the bias in sequence and data availability and the variability in the applied vaccination protocols prevent robust conclusions and warrant further investigations.

4.
Arch Virol ; 166(1): 9-26, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33416996

ABSTRACT

Avian infectious bronchitis is a contagious viral disease, caused by avian infectious bronchitis virus (IBV), that leads to severe losses in the poultry industry all over the world. Since the 1950s, IBV has circulated in the Middle East and North Africa, and no tangible evidence has shown any effects of measures taken to control its spread or evolution. Furthermore, new IBV variants are continually discovered. Although several genetic studies on IBV have been conducted, many IBV strains from this region have either been misclassified or remain unclassified. The genotype 23 (GI-23) variant emerged and has prevailed in the Middle East by continuously evolving through inter- and/or intra-genotypic recombination. The GI-23 genotype is currently enzootic throughout Europe and Asia. Although many studies of protection against the circulating strains have been conducted, they have not been standardized according to regulatory requirements. In this review, we provide an overview of the evolution and genetic diversity of IBV genotypes and a genetic classification of IBV strains, with a focus on the GI-23 genotype. The high prevalence of IBV GI-23 strains necessitates the adoption of vaccination schemes using GI-23-based vaccines.


Subject(s)
Infectious bronchitis virus/genetics , Animals , Asia , Bird Diseases/virology , Coronavirus Infections/virology , Europe , Evolution, Molecular , Genotype , Middle East , Vaccination/methods
5.
Transbound Emerg Dis ; 68(1): 21-36, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31297991

ABSTRACT

For several years, poultry production in Egypt has been suffering from co-circulation of multiple respiratory viruses including highly pathogenic avian influenza virus (HPAIV) H5N1 (clade 2.2.1.2) and low pathogenic H9N2 (clade G1-B). Incursion of HPAIV H5N8 (clade 2.3.4.4b) to Egypt in November 2016 via wild birds followed by spread into commercial poultry flocks further complicated the situation. Current analyses focussed on 39 poultry farms suffering from respiratory manifestation and high mortality in six Egyptian governorates during 2017-2018. Real-time RT-PCR (RT-qPCR) substantiated the co-presence of at least two respiratory virus species in more than 80% of the investigated flocks. The percentage of HPAIV H5N1-positive holdings was fairly stable in 2017 (12.8%) and 2018 (10.2%), while the percentage of HPAIV H5N8-positive holdings increased from 23% in 2017 to 66.6% during 2018. The proportion of H9N2-positive samples was constantly high (2017:100% and 2018:63%), and H9N2 co-circulated with HPAIV H5N8 in 22 out of 39 (56.8%) flocks. Analyses of 26 H5, 18 H9 and 4 N2 new sequences confirmed continuous genetic diversification. In silico analysis revealed numerous amino acid substitutions in the HA and NA proteins suggestive of increased adaptation to mammalian hosts and putative antigenic variation. For sensitive detection of H9N2 viruses by RT-qPCR, an update of primers and probe sequences was crucial. Reasons for the relative increase of HPAIV H5N8 infections versus H5N1 remained unclear, but lack of suitable vaccines against clade 2.3.4.4b cannot be excluded. A reconsideration of surveillance and control measures should include updating of diagnostic tools and vaccination strategies.


Subject(s)
Chickens , Coinfection/veterinary , Ducks , Influenza A Virus, H5N8 Subtype/physiology , Influenza in Birds/epidemiology , Poultry Diseases/epidemiology , Turkeys , Animals , Coinfection/epidemiology , Coinfection/virology , Egypt/epidemiology , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H9N2 Subtype/physiology , Influenza in Birds/virology , Poultry Diseases/virology
6.
Infect Genet Evol ; 84: 104375, 2020 10.
Article in English | MEDLINE | ID: mdl-32454245

ABSTRACT

Highly pathogenic (HP) H5N1, clade 2.2.1, and low pathogenic avian influenza (LPAI) H9N2 viruses, G1-B lineage, are endemic in poultry in Egypt and have co-circulated for almost a decade. Surprisingly, no inter-subtypic reassortment events have been reported from the field during that time. After the introduction of HPAIV H5N8, clade 2.3.4.4b, in Egyptian poultry in 2016, suddenly HP H5N2 reassortants with H9N2 viruses emerged. The current analyses focussed on studying 32 duck flocks, 4 broiler chicken flocks, and 1 turkey flock, suffering from respiratory manifestations with moderate to high mortality reared in two Egyptian governorates during 2019. Real-time RT-PCR substantiated the presence of HP H5N8 in 21 of the 37 investigated flocks with mixed infection of H9N2 in two of them. HP H5N1 was not detected. Full hemagglutinin (HA) sequencing of 10 samples with full-genome sequencing of three of them revealed presence of a single genotype. Very few substituting mutations in the HA protein were detected versus previous Egyptian HA sequences of that clade. Interestingly, amino acid substitutions in the Matrix (M2) and the Neuraminidase (NA) proteins associated with conferring both Amantadine and Oseltamivir resistance were present. Systematic reassortment analysis of all publicly available Egyptian whole genome sequences of HP H5N8 (n = 23), reassortant HP H5N2 (n = 2) and LP H9N2 (n = 53) viruses revealed presence of at least seven different genotypes of HPAI H5Nx viruses of clade 2.3.4.4b in Egypt since 2016. For H9N2 viruses, at least three genotypes were distinguishable. Heat mapping and tanglegram analyses suggested that several internal gene segments in both HP H5Nx and H9N2 viruses originated from avian influenza viruses circulating in wild bird species in Egypt. Based on the limited set of whole genome sequences available, annual replacement patterns of HP H5Nx genotypes emerged and suggested selective advantages of certain genotypes since 2016.


Subject(s)
Influenza A Virus, H5N2 Subtype/genetics , Influenza A Virus, H5N8 Subtype/genetics , Influenza in Birds/virology , Phylogeny , Animals , Egypt/epidemiology , Genome, Viral , Genotype , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/mortality , Mortality , Poultry/virology , Poultry Diseases/epidemiology , Poultry Diseases/mortality , Poultry Diseases/virology
7.
Vet Res ; 51(1): 48, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32234073

ABSTRACT

An intravenous pathogenicity index (IVPI) of > 1.2 in chickens or, in case of subtypes H5 and H7, expression of a polybasic hemagglutinin cleavage site (HACS), signals high pathogenicity (HP). Viruses of the H9N2-G1 lineage, which spread across Asia and Africa, are classified to be of low pathogenicity although, in the field, they became associated with severe clinical signs and epizootics in chickens. Here we report on a pre-eminent trait of recent H9N2-G1 isolates from Bangladesh and India, which express a tribasic HACS (motif PAKSKR-GLF; reminiscent of an HPAIV-like polybasic HACS) and compare their features to H9Nx viruses with di- and monobasic HACS from other phylogenetic and geographic origins. In an in vitro assay, the tribasic HACS of H9N2 was processed by furin-like proteases similar to bona fide H5 HPAIV while some dibasic sites showed increased cleavability but monobasic HACS none. Yet, all viruses remained trypsin-dependent in cell culture. In ovo, only tribasic H9N2 viruses were found to replicate in a grossly extended spectrum of embryonic organs. In contrast to all subtype H5/H7 HPAI viruses, tribasic H9N2 viruses did not replicate in endothelial cells either in the chorio-allantoic membrane or in other embryonic tissues. By IVPI, all H9Nx isolates proved to be of low pathogenicity. Pathogenicity assessment of tribasic H9N2-G1 viruses remains problematic. It cannot be excluded that the formation of a third basic amino acid in the HACS forms an intermediate step towards a gain in pathogenicity. Continued observation of the evolution of these viruses in the field is recommended.


Subject(s)
Chickens , Hemagglutinins/metabolism , Influenza A Virus, H9N2 Subtype/metabolism , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza in Birds/virology , Poultry Diseases/virology , Animals , Chick Embryo , Geography , Phylogeny , Virulence
8.
Emerg Infect Dis ; 26(1): 129-133, 2020 01.
Article in English | MEDLINE | ID: mdl-31855539

ABSTRACT

We detected a novel reassortant highly pathogenic avian influenza A(H5N2) virus in 3 poultry farms in Egypt. The virus carried genome segments of a pigeon H9N2 influenza virus detected in 2014, a nucleoprotein segment of contemporary chicken H9N2 viruses from Egypt, and hemagglutinin derived from the 2.3.4.4b H5N8 virus clade.


Subject(s)
Chickens/virology , Influenza A Virus, H5N2 Subtype , Influenza in Birds/virology , Poultry Diseases/virology , Reassortant Viruses , Animals , Ducks/virology , Egypt/epidemiology , Influenza A Virus, H5N2 Subtype/genetics , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza in Birds/epidemiology , Phylogeny , Poultry Diseases/epidemiology , Reassortant Viruses/genetics
9.
Res Vet Sci ; 115: 356-362, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28692924

ABSTRACT

In this study, commercial broilers were experimentally infected with single (classical IBV, variant IBV or AIV-H9N2) or mixed AIV-H9N2 with classical, variant or vaccine strains of IBV. Birds were monitored for clinical and pathological outcomes and virus shedding for 10days post infection (DPI). Clinical signs were limited to the respiratory tract in all challenged groups and varied from mild to moderate mouth breathing to severe respiratory signs with snorting sound and extended head. Mortalities were only recorded in mixed AIV-H9N2/variant IBV challenge group. AIV-H9N2 challenge caused tracheal petechial hemorrhage that progressed to tracheal congestion and caseation. In mixed AIV-H9N2/IBV vaccine challenge, severe tracheitis with bronchial cast formation was observed. In mixed AIV-H9N2/variant IBV challenge severe congestion of the tracheal mucosa and excessive exudates with a tendency to form tubular casts were observed. Kidney ureate deposition was only observed in variant IBV challenge group. Histopathologically, tracheal congestion, severe degeneration, and deciliation were noticed in all groups of mixed infection. Interestingly, hemorrhage and atrophy were observed in thymus gland of birds challenged with single AIV-H9N2 or mixed AIV-H9N2/IBV. There was no difference in the tracheal shedding level of variant IBV between single and mixed infected groups while classical IBV shedding increased in mixed infection group. Interestingly, the AIV-H9N2 showed constantly high shedding titers till 7DPI with variant or vaccine IBV co-infection. In conclusion, co-infection of IBV and AIV-H9N2 induced severe clinical outcome and high mortality. Also, IBV co-infection increased the shedding of AIV-H9N2 in experimentally infected birds.


Subject(s)
Chickens , Coinfection/veterinary , Coronavirus Infections/veterinary , Influenza in Birds/virology , Poultry Diseases/virology , Animals , Coinfection/virology , Coronavirus Infections/virology , Infectious bronchitis virus/physiology , Influenza A Virus, H9N2 Subtype/physiology , Virus Shedding
10.
J Virol Methods ; 245: 19-27, 2017 07.
Article in English | MEDLINE | ID: mdl-28336367

ABSTRACT

In Egypt, currently two geographically restricted genotypes of the infectious bronchitis coronavirus (IBV) are circulating with detrimental effects for poultry industry. A sensitive real-time RT-PCR assay targeting the IBV nucleocapsid gene (N) was developed to screen clinical samples for presence of IBV. Conventional RT-PCRs amplifying hypervariable regions (HVRs 1-2 and 3) of the IBV S1 gene were developed and amplificates used for nucleotide sequence-based typing of IBV field strains in Egyptian chickens directly from clinical samples.


Subject(s)
Chickens/virology , Coinfection/veterinary , Coronavirus Infections/veterinary , Infectious bronchitis virus/isolation & purification , Poultry Diseases/diagnosis , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Coinfection/diagnosis , Coinfection/virology , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Egypt , Genotype , Infectious bronchitis virus/genetics , Influenza A virus/genetics , Influenza in Birds/complications , Influenza in Birds/virology , Molecular Diagnostic Techniques , Newcastle Disease/complications , Newcastle Disease/virology , Newcastle disease virus/genetics , Poultry Diseases/epidemiology , Poultry Diseases/virology , RNA, Viral/genetics
11.
Poult Sci ; 95(6): 1271-80, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26976895

ABSTRACT

In this study, respiratory viral pathogens were screened using real-time RT-PCR in 86 broiler chicken flocks suffering from respiratory diseases problems in 4 Egyptian governorates between January 2012 and February 2014. The mortality rates in the investigated flocks ranged from 1 to 47%. Results showed that mixed infection represented 66.3% of the examined flocks. Mixed infectious bronchitis (IBV) and avian influenza (AI)-H9N2 viruses were the most common infection (41.7%). Lack of AI-H9N2 vaccination and high rates of mixed infections in which AI-H9N2 is involved indicate an early AI-H9N2 infection with a potential immunosuppressive effect that predisposes for other viral infections. High pathogenic AI-H5N1 and virulent Newcastle disease virus (vNDV) infections were also detected (26.7% and 8.1%, respectively). Interestingly, co-infection of AI-H9N2 with either AIV-H5N1 or vNDV rarely resulted in high mortality. Partial cell-mediated immunity against similar internal AI genes, as well as virus interference between AI and vNDV, could be an explanation for this. Highly prevalent IBV and AI-H9N2 were isolated and were molecularly characterized based on S1 gene hypervariable region 3 ( HVR3: ) and hemagglutinin gene (HA) sequences, respectively. IBV strains were related to the variant group of IBV with multiple mutations in HVR3. Though AI-H9N2 viruses showed low rate of evolution in comparison to recent strains, few amino acid substitutions indicative of antibody selection pressure were observed in the HA gene. In conclusion, mixed viral infections, especially with IBV and AI-H9N2 viruses, are the predominant etiology of respiratory disease problems in broiler chickens in Egypt. Further investigations of the role of AI, IBV, and ND viruses' co-infections and interference in terms of altering the severity of clinical signs and lesions and/or generating novel reassortants within each virus are needed.


Subject(s)
Chickens , Coronavirus Infections/veterinary , Influenza in Birds/epidemiology , Newcastle Disease/epidemiology , Poultry Diseases/epidemiology , Amino Acid Sequence , Animals , Coinfection/epidemiology , Coinfection/mortality , Coinfection/veterinary , Coinfection/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Egypt/epidemiology , Infectious bronchitis virus/genetics , Infectious bronchitis virus/physiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/physiology , Influenza in Birds/mortality , Influenza in Birds/virology , Newcastle Disease/mortality , Newcastle Disease/virology , Newcastle disease virus/genetics , Newcastle disease virus/physiology , Phylogeny , Polymerase Chain Reaction/veterinary , Poultry Diseases/mortality , Poultry Diseases/virology , Prevalence , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...