Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 32(11): e4806, 2023 11.
Article in English | MEDLINE | ID: mdl-37833244

ABSTRACT

Bacterial WxL proteins contain peptidoglycan-binding WxL domains, which have a dual Trp-x-Leu motif and are involved in virulence. It was recently shown that WxL proteins occur in gene clusters, containing typically a small WxL protein (which in the mature protein consists only of a WxL domain), a large WxL protein (which contains a C-terminal WxL domain with N-terminal host-binding domains), and a conserved protein annotated as a Domain of Unknown Function (DUF). Here we analyze this DUF and show that it contains two tandem domains-DUF916 and DUF3324-which both have an IgG-like fold and together form a single functional unit, connected to a C-terminal transmembrane helix. DUF3324 is a stable domain, while DUF916 is less stable and is likely to require a stabilizing interaction with WxL. The protein is suggested to have an important role to bind and stabilize WxL on the peptidoglycan surface, via the DUF916 domain, and to bind to host cells via the DUF3324 domain. AlphaFold2 predicts that a ß-hairpin strand from DUF916 inserts into WxL adjacent to its N-terminus. We therefore propose to rename the DUF916-DUF3324 pair as WxL Interacting Protein (WxLIP), with DUF916, DUF3324 and the transmembrane helix forming the first, second and third domains of WxLIP, which we characterize as peptidoglycan binding domain (PGBD), host binding domain (HBD), and transmembrane helix (TMH) respectively.


Subject(s)
Bacterial Proteins , Peptidoglycan , Peptidoglycan/metabolism , Bacterial Proteins/chemistry , Protein Binding , Virulence
2.
Saudi J Biol Sci ; 30(2): 103526, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36568411

ABSTRACT

The WxL domain is found on the cell surface of many bacteria, most of which are commensal gut bacteria. Its functions are generally identified as being related to virulence and/or peptidoglycan attachment, but there is so far no clear function or structure for this domain. Here, a range of bioinformatics tools were used to clarify the structure and function. These indicate that WxL domains occur in cell surface-associated gene clusters that always contain a small WxL, large WxL and DUF916 domain; and that the small and large WxL proteins have distinct structure despite sharing two conserved WxL motifs. The two WxL motifs form a hydrophobic surface buried inside the protein. The likely function of the WxL domain is to attach to bacterial peptidoglycan, forming a platform to allow associated domains in the cluster to interact with host proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...