Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 10(12): 5500-5507, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37815454

ABSTRACT

Treatment of wound biofilm infections faces challenges from both pathogens and uncontrolled host immune response. Treating both issues through a single vector would provide enhanced wound healing. Here, we report the use of a potent cationic antimicrobial polymer to generate siRNA polyplexes for dual-mode treatment of wound biofilms in vivo. These polyplexes act both as an antibiofilm agent and a delivery vehicle for siRNA for the knockdown of biofilm-associated pro-inflammatory MMP9 in host macrophages. The resulting polyplexes were effective in vitro, eradicating MRSA biofilms and efficiently delivering siRNA to macrophages in vitro with concomitant knockdown of MMP9. These polyplexes were likewise effective in an in vivo murine wound biofilm model, significantly reducing bacterial load in the wound (∼99% bacterial clearance) and reducing MMP9 expression by 80% (qRT-PCR). This combination therapeutic strategy dramatically reduced wound purulence and significantly expedited wound healing. Taken together, these polyplexes provide an effective and translatable strategy for managing biofilm-infected wounds.


Subject(s)
Anti-Infective Agents , Matrix Metalloproteinase 9 , Animals , Mice , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Wound Healing/genetics , Biofilms
2.
Biomaterials ; 302: 122344, 2023 11.
Article in English | MEDLINE | ID: mdl-37857021

ABSTRACT

Intracellular pathogenic bacteria use immune cells as hosts for bacterial replication and reinfection, leading to challenging systemic infections including peritonitis. The spread of multidrug-resistant (MDR) bacteria and the added barrier presented by host cell internalization limit the efficacy of standard antibiotic therapies for treating intracellular infections. We present a non-antibiotic strategy to treat intracellular infections. Antimicrobial phytochemicals were stabilized and delivered by polymer-stabilized biodegradable nanoemulsions (BNEs). BNEs were fabricated using different phytochemicals, with eugenol-loaded BNEs (E-BNEs) affording the best combination of antimicrobial efficacy, macrophage accumulation, and biocompatibility. The positively-charged polymer groups of the E-BNEs bind to the cell surface of macrophages, facilitating the entry of eugenol that then kills the intracellular bacteria without harming the host cells. Confocal imaging and flow cytometry confirmed that this entry occurred mainly via cholesterol-dependent membrane fusion. As eugenol co-localized and interacted with intracellular bacteria, antibacterial efficacy was maintained. E-BNEs reversed the immunosuppressive effects of MRSA on macrophages. Notably, E-BNEs did not elicit resistance selection after multiple exposures of MRSA to sub-therapeutic doses. The E-BNEs were highly effective against a murine model of MRSA-induced peritonitis with better bacterial clearance (99 % bacteria reduction) compared to clinically-employed treatment with vancomycin. Overall, these findings demonstrate the potential of E-BNEs in treating peritonitis and other refractory intracellular infections.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Peritonitis , Mice , Animals , Eugenol/pharmacology , Eugenol/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Polymers/pharmacology , Peritonitis/drug therapy , Peritonitis/microbiology , Microbial Sensitivity Tests
3.
Antibiotics (Basel) ; 12(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37627660

ABSTRACT

Multi-drug-resistant (MDR) bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), pose a significant challenge in healthcare settings. Small molecule antimicrobials (SMAs) such as α-pyrones have shown promise as alternative treatments for MDR infections. However, the hydrophobic nature of many SMAs limits their solubility and efficacy in complex biological environments. In this study, we encapsulated pseudopyronine analogs (PAs) in biodegradable polymer nanoemulsions (BNEs) for efficient eradication of biofilms. We evaluated a series of PAs with varied alkyl chain lengths and examined their antimicrobial activity against Gram-positive pathogens (S. aureus, MRSA, and B. subtilis). The selected PA with the most potent antibiofilm activity was incorporated into BNEs for enhanced solubility and penetration into the EPS matrix (PA-BNEs). The antimicrobial efficacy of PA-BNEs was assessed against biofilms of Gram-positive strains. The BNEs facilitated the solubilization and effective delivery of the PA deep into the biofilm matrix, addressing the limitations of hydrophobic SMAs. Our findings demonstrated that the PA2 exhibited synergistic antibiofilm activity when it was loaded into nanoemulsions. This study presents a promising platform for addressing MDR infections by combining pseudopyronine analogs with antimicrobial biodegradable nanoemulsions, overcoming challenges associated with treating biofilm infections.

4.
ACS Appl Mater Interfaces ; 15(31): 37205-37213, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37523688

ABSTRACT

Multidrug resistance (MDR) in bacteria is a critical global health challenge that is exacerbated by the ability of bacteria to form biofilms. We report a combination therapy for biofilm infections that integrates silver nanoclusters (AgNCs) into polymeric biodegradable nanoemulsions (BNEs) incorporating eugenol. These Ag-BNEs demonstrated synergistic antimicrobial activity between the AgNCs and the BNEs. Microscopy studies demonstrated that Ag-BNEs penetrated the dense biofilm matrix and effectively disrupted the bacterial membrane. The Ag-BNE vehicle also resulted in more effective silver delivery into the biofilm than AgNCs alone. This combinacional system featured disruptionof biofilms by BNEs and enhanced delivery of AgNCs for synergy to provide highly efficient killing of MDR biofilms.


Subject(s)
Anti-Bacterial Agents , Silver , Anti-Bacterial Agents/pharmacology , Silver/pharmacology , Drug Resistance, Multiple, Bacterial , Polymers/pharmacology , Biofilms , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...