Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(3)2021 03 12.
Article in English | MEDLINE | ID: mdl-33808947

ABSTRACT

One important factor for successful disease management is the ability to rapidly and accurately identify the causal agent. Plant viruses cause severe economic losses and pose a serious threat to sustainable agriculture. Therefore, optimization of the speed, sensitivity, feasibility, portability, and accuracy of virus detection is urgently needed. Here, we developed a clustered regularly interspaced short palindromic repeats (CRISPR)-based nucleic acid diagnostic method utilizing the CRISPR-Cas12a system for detecting two geminiviruses, tomato yellow leaf curl virus (TYLCV) and tomato leaf curl New Delhi virus (ToLCNDV), which have single-stranded DNA genomes. Our assay detected TYLCV and ToLCNDV in infected plants with high sensitivity and specificity. Our newly developed assay can be performed in ~1 h and provides easy-to-interpret visual readouts using a simple, low-cost fluorescence visualizer, making it suitable for point-of-use applications.


Subject(s)
Begomovirus/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Plant Diseases/virology , Begomovirus/isolation & purification , Biosensing Techniques/methods , DNA, Plant/genetics , Genome, Viral/genetics , Solanum lycopersicum/virology , Molecular Diagnostic Techniques/methods
2.
Virus Res ; 288: 198129, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32822689

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 affects all aspects of human life. Detection platforms that are efficient, rapid, accurate, specific, sensitive, and user friendly are urgently needed to manage and control the spread of SARS-CoV-2. RT-qPCR based methods are the gold standard for SARS-CoV-2 detection. However, these methods require trained personnel, sophisticated infrastructure, and a long turnaround time, thereby limiting their usefulness. Reverse transcription-loop-mediated isothermal amplification (RT-LAMP), a one-step nucleic acid amplification method conducted at a single temperature, has been used for colorimetric virus detection. CRISPR-Cas12 and CRISPR-Cas13 systems, which possess collateral activity against ssDNA and RNA, respectively, have also been harnessed for virus detection. Here, we built an efficient, rapid, specific, sensitive, user-friendly SARS-CoV-2 detection module that combines the robust virus amplification of RT-LAMP with the specific detection ability of SARS-CoV-2 by CRISPR-Cas12. Furthermore, we combined the RT-LAMP-CRISPR-Cas12 module with lateral flow cells to enable highly efficient point-of-care SARS-CoV-2 detection. Our iSCAN SARS-CoV-2 detection module, which exhibits the critical features of a robust molecular diagnostic device, should facilitate the effective management and control of COVID-19.


Subject(s)
Betacoronavirus/genetics , CRISPR-Cas Systems , Clinical Laboratory Techniques/methods , Colorimetry/methods , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/instrumentation , Colorimetry/instrumentation , Coronavirus Infections/virology , Endodeoxyribonucleases/chemistry , Humans , Molecular Diagnostic Techniques/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , Pandemics , Pneumonia, Viral/virology , Point-of-Care Systems , Rheology , SARS-CoV-2 , Sensitivity and Specificity
3.
Commun Biol ; 3(1): 44, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974493

ABSTRACT

Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise ACETOLACTATE SYNTHASE (OsALS) allele modification to generate herbicide-resistant rice (Oryza sativa) plants, CAROTENOID CLEAVAGE DIOXYGENASE-7 (OsCCD7) to engineer plant architecture, and generate in-frame fusions with the HA epitope at HISTONE DEACETYLASE (OsHDT) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Endodeoxyribonucleases/metabolism , Gene Editing , Genetic Engineering , Oryza/genetics , Recombinant Fusion Proteins , Recombinational DNA Repair , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Base Sequence , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/genetics , Genes, Plant , Genetic Engineering/methods , Genome, Plant , Herbicide Resistance/genetics , Oryza/drug effects , Oryza/metabolism , Phenotype , Protein Binding
4.
Front Microbiol ; 11: 610872, 2020.
Article in English | MEDLINE | ID: mdl-33391239

ABSTRACT

Most viruses that infect plants use RNA to carry their genomic information; timely and robust detection methods are crucial for efficient control of these diverse pathogens. The RNA viruses, potexvirus (Potexvirus, family Alphaflexiviridae), potyvirus (Potyvirus, family Potyviridae), and tobamovirus (Tobamovirus, family Virgaviridae) are among the most economically damaging pathogenic plant viruses, as they are highly infectious and distributed worldwide. Their infection of crop plants, alone or together with other viruses, causes severe yield losses. Isothermal nucleic acid amplification methods, such as loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and others have been harnessed for the detection of DNA- and RNA-based viruses. However, they have a high rate of non-specific amplification and other drawbacks. The collateral activities of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease Cas systems such as Cas12 and Cas14 (which act on ssDNA) and Cas13 (which acts on ssRNA) have recently been exploited to develop highly sensitive, specific, and rapid detection platforms. Here, we report the development of a simple, rapid, and efficient RT- RPA method, coupled with a CRISPR/Cas12a-based one-step detection assay, to detect plant RNA viruses. This diagnostic method can be performed at a single temperature in less than 30 min and integrated with an inexpensive commercially available fluorescence visualizer to facilitate rapid, in-field diagnosis of plant RNA viruses. Our developed assay provides an efficient and robust detection platform to accelerate plant pathogen detection and fast-track containment strategies.

5.
Trends Biotechnol ; 38(3): 236-240, 2020 03.
Article in English | MEDLINE | ID: mdl-31477243

ABSTRACT

Directed evolution involves generating diverse sequence variants of a gene of interest to produce a desirable trait under selective pressure. CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9) systems can be programmed to target any genomic locus and perform targeted directed evolution. Here, we discuss the opportunities and challenges of this emerging platform for targeted crop improvement.


Subject(s)
CRISPR-Cas Systems , Crops, Agricultural/genetics , Directed Molecular Evolution/methods , Clustered Regularly Interspaced Short Palindromic Repeats , Crops, Agricultural/drug effects , DNA Repair , Gene Editing , Herbicide Resistance/genetics , Plants, Genetically Modified
6.
Front Plant Sci ; 8: 1441, 2017.
Article in English | MEDLINE | ID: mdl-28883826

ABSTRACT

The CRISPR/Cas9 system has been applied in diverse eukaryotic organisms for targeted mutagenesis. However, targeted gene editing is inefficient and requires the simultaneous delivery of a DNA template for homology-directed repair (HDR). Here, we used CRISPR/Cas9 to generate targeted double-strand breaks and to deliver an RNA repair template for HDR in rice (Oryza sativa). We used chimeric single-guide RNA (cgRNA) molecules carrying both sequences for target site specificity (to generate the double-strand breaks) and repair template sequences (to direct HDR), flanked by regions of homology to the target. Gene editing was more efficient in rice protoplasts using repair templates complementary to the non-target DNA strand, rather than the target strand. We applied this cgRNA repair method to generate herbicide resistance in rice, which showed that this cgRNA repair method can be used for targeted gene editing in plants. Our findings will facilitate applications in functional genomics and targeted improvement of crop traits.

SELECTION OF CITATIONS
SEARCH DETAIL
...