Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 23(1): 60, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388439

ABSTRACT

The marine black yeasts are characterized by the production of many novel protective substances. These compounds increase their physiological adaptation to multi-extreme environmental stress. Hence, the exopolysaccharide (EPS) producing marine black yeast SAHE was isolated in this study. It was molecularly identified as Hortaea werneckii (identity 98.5%) through ITS1 and ITS4 gene sequencing analysis. The physicochemical properties of the novel SAHE-EPS were investigated through FTIR, GC-MS, TGA, ESM, and EDX analysis, revealing its heteropolysaccharide nature. SAHE-EPS was found to be thermostable and mainly consists of sucrose, maltose, cellobiose, lactose, and galactose. Furthermore, it exhibited an amorphous texture and irregular porous surface structure. SAHE-EPS showed significant antiradical activity, as demonstrated by the DPPH radical scavenging assay, and the IC50 was recorded to be 984.9 µg/mL. In addition, SAHE-EPS exhibited outstanding anticancer activity toward the A549 human lung cancer cell line (IC50 = 22.9 µg/mL). Conversely, it demonstrates minimal cytotoxicity toward the WI-38 normal lung cell line (IC50 = 203 µg/mL), which implies its safety. This study represents the initial attempt to isolate and characterize the chemical properties of an EPS produced by the marine black yeast H. werneckii as a promising antiradical and anticancer agent.


Subject(s)
Ascomycota , Saccharomyces cerevisiae , Humans
2.
Biol Trace Elem Res ; 201(4): 2071-2087, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35665884

ABSTRACT

The anti-inflammatory, anti-arthritic, and antimicrobial activities of some common Egyptian seaweeds in addition to their phytochemical and heavy metal contents were investigated. Phytochemical screening of the seaweed extracts showed the presence of different primary and secondary metabolites with different concentrations according to their species and the used solvent. The ethanolic extract of Colpmenia sinuosa (CSBE2) exhibited the maximum anti-inflammatory and anti-arthritic activity at 1000 µg/ml concentration compared to other seaweed extracts. The dichloromethane extract of Corallina officinalis (CORM) exerted the highest antimicrobial activity with an average inhibition zone diameter (AV) = 15.29 mm and activity index (AI) = 1.53 and with the highest antagonistic activity against Escherichia coli (28 mm). It is followed by Ulva linza ethanolic extract (ULGE2) which recorded (AV) of 14.71 mm and (AI) of 1.30 with the highest antifungal activity against Candida albicans (30 mm). The collected seaweeds would therefore be a very promising source for treating inflammatory, arthritic, and microbial diseases. Moreover, the investigated seaweeds showed variable concentrations of heavy metals among various species. The mean concentrations of the heavy metals took the following order: Fe > Zn > Mn > Ba > Cu > As > Cr > Ni > Pb > V > Cd > Se > Co > Mo. Based on the permissible limits set by the WHO and CEVA, Pb and Ni in the studied seaweeds were found to be within the permissible limits, whereas Cd and Zn contents were at the borderline. Significant correlations were observed between studied parameters. The estimated daily intakes for most heavy metals were lower than the recommended daily intakes.


Subject(s)
Anti-Infective Agents , Metals, Heavy , Seaweed , Water Pollutants, Chemical , Cadmium/metabolism , Egypt , Lead/metabolism , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Seaweed/chemistry , Anti-Infective Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/metabolism , Environmental Monitoring
3.
Front Microbiol ; 13: 871394, 2022.
Article in English | MEDLINE | ID: mdl-35495654

ABSTRACT

The marine ecosystem is a complex niche with unique environmental circumstances. Microbial communities from the sea are one of the main origins of compounds with tremendous capabilities. Marine yeasts have the ability to produce secondary metabolites that are architecturally distinct from those found in terrestrial species. Melanin pigment synthesized by marine halotolerant black yeast Hortaea werneckii AS1 isolated from Mediterranean salt lakes in Alexandria, Egypt was found to exert a radical scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) with an IC50 of 61.38 µg/ml. Furthermore, it showed no cytotoxicity toward human skin fibroblast cell line (HSF) with an IC50 value above 0.1 mg/ml. The antimicrobial capability of the pigment was revealed against the tested number of bacterial and fungal strains with the highest inhibition zone of 25 mm against Aeromonas sp. and a growth inhibition percentage up to 63.6% against Aspergillus niger. From an environmental impact point of view, the pigment disclosed a heavy metal removal efficiency of 85.7, 84.8, and 81.5% for Pb2+, Cd2+, and Ni2+, respectively, at 100 mg/L metal concentration. The previously mentioned results suggested melanin from H. werneckii AS1 as a promising biocompatible candidate in various medical, cosmetics, pharmaceutical, and environmental applications.

4.
BMC Microbiol ; 22(1): 92, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35395716

ABSTRACT

BACKGROUND: Melanins are one of the magnificent natural pigments synthesized by a wide range of microorganisms including different species of fungi and bacteria. Marine black yeasts appear to be potential prospects for the synthesis of natural melanin pigment. As a result, the goal of this research was to isolate a marine black yeast melanin-producing strain and improve the culturing conditions in order to maximize the yield of such a valuable pigment. RESULTS: Among five locally isolated black yeast strains, the only one that demonstrated a potent remarkable melanin pigment production was identified using ITS rDNA as Hortaea werneckii AS1. The extracted pigment's physiochemical characterization and analytical investigation with Ultraviolet-Visible (UV) spectrophotometry, Fourier Transform-Infrared spectroscopy (FTIR), and Scanning Electron Microscope (SEM) confirmed its nature as a melanin pigment. The data obtained from the polynomial model's maximum point suggested that CaCl2, 1.125 g/L; trace element, 0.25 ml/L; and a culture volume 225 mL/500 mL at their optimal values were the critical three elements impacting melanin production. In comparison with the baseline settings, the response surface methodology (RSM) optimization approach resulted in a 2.0 - fold improvement in melanin output. CONCLUSIONS: A maximum melanin yield of 0.938 g/L proved the halotolerant H. werneckii AS1 potentiality as a source for natural melanin pigment synthesis 'when compared to some relevant black yeast strains' and hence, facilitating its incorporation in a variety of pharmaceutical and environmental applications.


Subject(s)
Ascomycota , Exophiala , Ascomycota/genetics , Ascomycota/metabolism , Exophiala/metabolism , Melanins , Pigmentation , Saccharomyces cerevisiae/metabolism
5.
Front Microbiol ; 9: 2377, 2018.
Article in English | MEDLINE | ID: mdl-30405541

ABSTRACT

Lipases are enzymes that have the potential to hydrolyze triacylglycerol to free fatty acids and glycerol and have various applications. The aim of the present study was to isolate and screen marine bacteria for lipase production, optimize the production, and treat wastewater. A total of 20 marine bacterial isolates were obtained from the Mediterranean Sea and were screened for lipase production. All isolates were found to have lipolytic ability. The differences between the isolates were studied using RAPD-PCR. The most promising lipase producer (isolate 3) that exhibited the highest lipolytic hydrolysis (20 mm) was identified as Bacillus cereus HSS using 16S rDNA analysis and had the accession number MF581790. Optimization of lipase production was carried out using the Plackett-Burman experimental design with cotton seed oil as the inducer under shaking conditions at 10°C. The most significant factors that affected lipase production were FeSO4, KCl, and oil concentrations. By using the optimized culture conditions, the lipase activity increased by 1.8-fold compared with basal conditions. Immobilization by adsorption of cells on sponge and recycling raised lipase activity by 2.8-fold compared with free cells. The repeated reuse of the immobilized B. cereus HSS maintained reasonable lipase activity. A trial for the economic treatment of oily wastewater was carried out. Removal efficiencies of biological oxygen demand, total suspended solids, and oil and grease were 87.63, 90, and 94.7%, respectively, which is promising for future applications.

6.
Pol J Microbiol ; 66(4): 449-461, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29319513

ABSTRACT

Exopolysaccharides (EPSs) are high molecular weight polymers consisting of different sugar residues they are preferable for replacing synthetic polymers as they are degradable and nontoxic. Many microorganisms possess the ability to synthesize and excrete exopolysaccharides with novel chemical compositions, properties and structures to have potential applications in different fields. The present study attempt to optimize the production of EPS by marine Bacillus subtilis SH1 in addition to characterization and investigation of different valuable applications. Effect of medium type, incubation period and pH were studied using the one factor at a time experiments. It was shown that the highest productivity (24 gl-1) of exopolysaccharides was recorded by using yeast malt glucose medium with pH 9 at the fourth day of incubation. Experimental design using Response Surface Methodology (RSM) was applied to optimize various nutrients at different concentrations. The finalized optimized medium contained (gl-1) glucose (5), peptone (2.5), yeast extract (4.5) and malt extract (4.5) increased the production of EPS to 33.8 gl-1 with1.4 fold increase compared to the basal medium. Chemical characterization of the extracted EPS showed that, FTIR spectra exhibited bands at various regions. Moreover, HPLC chromatogram indicated that the EPS was a heteropolysaccharide consisting of maltose and rhamnose. The study was extended to evaluate the potentiality of the extracted polysaccharides in different medical applications. Results concluded that, EPS exhibited antibacterial activity against Aeromonas hydrophila, Pseudomonas aeruginosa and Streptococcus faecalis and the highest antibacterial activity (7.8, 9 and 10.4 AU/ml) was against S. faecalis at 50, 100 and 200 mg/ml respectively. The EPS exhibited various degree of antitumor effect toward the tested cell lines (MCF-7, HCT-116 and HepG2). In addition, EPS exhibited antiviral activity at 500 µg/ml. The antioxidant capacity increased with increasing the concentration of the sample. Scanning electron microscopic analysis showed that EPS had compact film-like structure, which could make it a useful in the future applications as in preparing plasticized film.


Subject(s)
Bacillus subtilis/physiology , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/pharmacology , Aeromonas hydrophila/drug effects , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Bacillus subtilis/drug effects , Cell Line, Tumor , Culture Media/chemistry , Enterococcus faecalis/drug effects , Epithelial Cells/drug effects , Humans , Pseudomonas aeruginosa/drug effects , Viruses/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...