Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840053

ABSTRACT

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Subject(s)
Germination , Lens Plant , Seeds , Temperature , Germination/physiology , Seeds/physiology , Seeds/growth & development , Lens Plant/physiology , Lens Plant/growth & development , Water/metabolism , Models, Biological , Osmotic Pressure
2.
BMC Plant Biol ; 24(1): 477, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816803

ABSTRACT

BACKGROUND: The rate of germination and other physiological characteristics of seeds that are germinating are impacted by deep sowing. Based on the results of earlier studies, conclusions were drawn that deep sowing altered the physio-biochemical and agronomic characteristics of wheat (Triticum aestivum L.). RESULTS: In this study, seeds of wheat were sown at 2 (control) and 6 cm depth and the impact of exogenously applied salicylic acid and tocopherol (Vitamin-E) on its physio-biochemical and agronomic features was assessed. As a result, seeds grown at 2 cm depth witnessed an increase in mean germination time, germination percentage, germination rate index, germination energy, and seed vigor index. In contrast, 6 cm deep sowing resulted in negatively affecting all the aforementioned agronomic characteristics. In addition, deep planting led to a rise in MDA, glutathione reductase, and antioxidants enzymes including APX, POD, and SOD concentration. Moreover, the concentration of chlorophyll a, b, carotenoids, proline, protein, sugar, hydrogen peroxide, and agronomic attributes was boosted significantly with exogenously applied salicylic acid and tocopherol under deep sowing stress. CONCLUSIONS: The results of the study showed that the depth of seed sowing has an impact on agronomic and physio-biochemical characteristics and that the negative effects of deep sowing stress can be reduced by applying salicylic acid and tocopherol to the leaves.


Subject(s)
Germination , Salicylic Acid , Tocopherols , Triticum , Triticum/growth & development , Triticum/metabolism , Triticum/drug effects , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Tocopherols/metabolism , Germination/drug effects , Seeds/drug effects , Seeds/growth & development , Antioxidants/metabolism , Stress, Physiological , Sustainable Development , Chlorophyll/metabolism
3.
Food Chem X ; 22: 101418, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38736980

ABSTRACT

Purpose of current study was to determine physicochemical, triglyceride composition, and functional groups of wild adlay accessions (brown, black, yellow, grey, green, off white, and purple) to find out its scope as cereal crop. Triglycerides, minerals and functional groups were determined through Gas chromatography, spectrophotometer and Fourier Transform Infrared (FTIR) spectrophotometer respectively. Results revealed variation among bulk densities, specific densities, percent empty spaces, and corresponding grain counts per 10 g of sample are useful in distinguishing brown, black, yellow, grey, green, off white, and purple wild adlay accessions. Specific density and grain count per 10 g sample was significantly related. No statistical relationship exists among the pronounced physical characteristics. Brown adlay expressed the highest protein, fat, and fiber contents 15.82%, 4.76% and 2.37% respectively. Protein, fat, ash, and fiber percent contents were found comparable to cultivated adlay. Spectrophotometric analysis revealed macro elements including phosphorus, potassium, calcium, and sodium in the range 0.3% - 2.2% and micro elements boron, iron, copper, zinc, and manganese in the range 1.6 mg/kg - 20.8 mg/kg. Gas chromatography showed polyunsaturated fatty acids (PUFA) constitute the primary fraction (39% ± 7.2) of wild adlay triglycerides. Linoleic and palmitic acids were present as prominent fatty acids, 43.5% ±1.4 and 26.3% ±1.4 respectively. Infra-red frequencies distinguished functional groups in narrow band and fingerprint region of protein in association with out of plane region leading to structural differences among adlay accessions. Comparison of major distinguishing vibrational frequencies among different flours indicated black adlay containing highest functional groups appeared promising for varietal development.

4.
Heliyon ; 10(7): e28766, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38576555

ABSTRACT

For thousands of years, plants have been utilized for medicinal purposes. For its naturally existing antibacterial properties, Nigella sativa is one of the most researched herbs. A study was conducted during rabi 2020-21 at The University of Haripur in order to evaluate the potential of ascorbic acid as plant growth enhancer. Two concentrations of ascorbic acid i-e 350 µm and 400 µm were sprayed along with control and water only spray on Nigella sativa crop. The study was arranged in RCBD two factor factorial arrangement. Factor A: ascorbic acid concentrations along with control and water spray, factor B: Growth stages (Stage1 = 40 days after sowing, Stage 2 = 80 DAS, Stage 3 = 120 DAS, Stage 4 = 40 + 80 DAS, Stage 5 = 40 + 120 DAS, Stage 6 = 80 + 120 DAS, Stage 7 = 40 + 80 + 120 DAS). Crop was sown in first week of November. Results reviled that chlorophyll b content, fixed oil content, 1000 seed weight, grain yield, Photosynthetic rate (µ mole m-2s-1), Transpiration rate (mmole m-2s-1), photosynthetic water use efficiency, Internal CO2 concentration (Ci) of leaf tissue and Stomatal conductance (mmole m-2s-1) were significantly affected by ascorbic acid concentrations and stage of application. Crop growth rate increased by 19.88% and 17.29%, chlorophyll b by 12.3% and 11.2%, fixed oil by 11.7% and 9%, grain yield by 10.29% and 9.8%, harvest index by 4% and 5.7% photosynthetic rate by 33%, 20% and stomatal conductance by 24.24% and 24.25 with application of ascorbic acid @ 350 µm, over control and water spray respectively. On the basis of these results it is concluded that application of ascorbic acid at the rate of 350 µm, followed by ascorbic acid at the rate of 400 µm significantly improves black cumin (Nigella sativa) yield and production. Hence it is recommended to apply ascorbic acid at the rate of 350 µm at 40 + 80+120 days after sowing of Nigella sativa crop for obtaining maximum results.

5.
Pak J Med Sci ; 40(3Part-II): 399-404, 2024.
Article in English | MEDLINE | ID: mdl-38356805

ABSTRACT

Background & Objective: Emotional intelligence (EI) can become a vital tool for resolving clinical conflicts (CC) in surgery. The postgraduate residents focus on the technical skills and undermine the soft skills required for their better training. Our aim was to determine the EI of postgraduate resident (PGR) years one & two in General and Orthopedic Surgery. The CC in their workplace and how they use their EI to resolve these conflicts. Methods: This mixed-method study was conducted from March 10, 2019 to May 28, 2020 at Departments of General and Orthopedic Surgery, Mayo Hospital, Lahore. The study was conducted in two phases 1 & 2. In Phase-1, one hundred PGR years one & two were administered the Mayor-Salovey-Caruso Emotional Intelligence test (MSCEIT) to measure EI. In phase-2, semi-structured in-depth interviews of 10 PGRs five with high and five with low EI were conducted to determine the CC and use of EI to resolve the CC at the workplace. A thematic analysis was done. Results: Out of 100 PGR, the mean EI score was 46.25±14.8 with a maximum score of 75.4, and a minimum score of 18.16 (p-value =0.775). Ninety-one (91%) have not improving EI, and 09 (09%) have considered developing EI. Five themes in four settings, including emergency, ward, elective operation theatre, and outpatient department (OPD) were determined. The emerged themes for the CC were nepotism, gender biases, burnout, lack of professionalism, and toxic culture. The following were CC management strategies: self-study, deceit, gender affinity, performing attention-attaining work, aggrieved reaction and being disgruntled when alone. Conclusion: None of the PGR was emotionally intelligent in overall grades, as well as a particular aspect of MSCEIT.

6.
Environ Res ; 247: 118279, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38246301

ABSTRACT

The presence of hazardous dyes in wastewater poses significant threats to both ecosystems and the natural environment. Conventional methods for treating dye-contaminated water have several limitations, including high costs and complex operational processes. This study investigated a sustainable bio-sorbent composite derived from the Capparis decidua plant and eggshells, and evaluated its effectiveness in removing anionic dyes namely tartrazine (E-102), methyl orange (MO), and their mixed system. The research examines the influence of initial concentration, contact time, pH, adsorbent dosage, and temperature on the adsorption properties of anionic dyes. Optimal removal of tartrazine (E-102), methyl orange (MO), and their mixed system was achieved at a pH of 3. The equilibrium was achieved at 80 min for MO and mixed systems, and 100 min for E-102. The adsorption process showed an exothermic nature, indicating reduced capacity with increasing temperature, consistent with heat release during adsorption. Positive entropy values indicated increased disorder at the solid-liquid interface, attributed to molecular rearrangements and interactions between dye molecules and the adsorbent. Isotherm analysis using Langmuir, Freundlich, Temkin, and Redlich-Peterson models revealed that the Langmuir model best fit the experimental data. The maximum adsorption capacities of 50.97 mg/g, 52.24 mg/g, and 56.23 mg/g were achieved for E-102, MO, and the mixed system under optimized conditions, respectively. The pseudo-second-order kinetic model demonstrated the best fit, indicating that adsorption occurs through physical and chemical interactions such as electrostatic attraction, pore filling, and hydrogen bonding. Hence, the developed bio-sorbent could be a sustainable and cost-effective solution for the treatment of anionic dyes from industrial effluents.


Subject(s)
Azo Compounds , Capparis , Water Pollutants, Chemical , Water Purification , Animals , Female , Coloring Agents/chemistry , Tartrazine , Egg Shell/chemistry , Ecosystem , Water Purification/methods , Indicators and Reagents , Decidua/chemistry , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
7.
Article in English | MEDLINE | ID: mdl-38083451

ABSTRACT

The supervised sleep staging methods are challenged by their strict requirements of a labelled and large dataset. This study considers an unsupervised dimensionality reduction method, the Deep Boltzmann Machine (DBM), trained to a transient state for binary classification of sleep stages. First, the joint time-frequency domain features from the polysomnographic recordings are extracted. Second, the extracted features are smoothed using 2 min rolling window to include contextual temporal information, and finally, they serve as an input for unsupervised training of DBM_transient. The results show that our method effectively separates the sleep stages in two-dimensional feature space with a large Fisher's discriminant value. The classification performance by the DBM_transient achieves a 96.1% F1 score, which is higher than DBM converged to an equilibrium state (95.2%), Principal Component Analysis (92.5%), Isometric Feature Mapping (95.9%), t-distributed Stochastic Neighbor Embedding (94.9%), and Uniform Manifold Approximation (95.0%) on the widely used sleep-EDF database. Additionally, Fisher's discriminant function demonstrates the superiority of the DBM_transient. The significance of the DBM transient lies in its ease of interpretability in two-dimensional space, and future multi-class implementation of the method may facilitate its usage in clinical applications.


Subject(s)
Electroencephalography , Sleep , Electroencephalography/methods , Sleep Stages , Databases, Factual , Discriminant Analysis
8.
PeerJ ; 11: e16179, 2023.
Article in English | MEDLINE | ID: mdl-37941932

ABSTRACT

Cultivation of high-yield varieties and unbalanced fertilization have induced micronutrient deficiency in soils worldwide. Zinc (Zn) is an essential nutrient for plant growth and its deficiency is most common in alkaline and calcareous soils. Therefore, this study aimed to evaluate the effect of Zn applied either alone or in combination with foliar application on the quality and production of wheat grown in alkaline soils. Zn was applied in the form of zinc sulfate (ZnSo4) to the soil and as a foliar spray during the sowing and tillering stages, respectively. Results showed that Zn fertilization of wheat, irrespective of modes of application, significantly increased grain and biological yield, grain per spike, and 1,000 grains weight over control; however, its effect was more noticeable when applied as 7.5 kg ha-1 of soil Zn combined with foliar Zn at 2.5 kg ha-1. Zn application significantly increased the grain protein content from 9.40% in the control to a maximum of 11.83% at soil Zn of 10 kg ha-1. Similarly, Zn application improved Zn, phosphorus (P), and potassium (K) concentrations in wheat grains. Moreover, correlation analysis showed that the grain Zn concentration was positively correlated with the grain P concentration. The correlation between P concentration in wheat grains and 1,000 grain weight was not significant. A total of 1,000 grains weight was positively correlated with tillers per plant, grain yield, and biological yield. There were positive correlations between protein content, biological yield, grain yield, and tillers per plant. Therefore, soil-applied Zn + foliar application in alkaline soils with limited Zn availability is crucial for improving wheat yield and grain quality.


Subject(s)
Soil , Zinc , Zinc/analysis , Triticum , Zinc Sulfate/metabolism , Edible Grain/chemistry
9.
Chemosphere ; 344: 140412, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37827466

ABSTRACT

Chemical dispersants are extensively used for marine oil spill remediation. However, the increased toxicity and low biodegradability of these dispersants restrict their employment in the marine environment. Hence, in this work, we have developed an eco-friendly formulation composed of an ionic liquid,1-butyl-3-methylimidazolium lauroyl sarcosinate [BMIM][Lausar] and sorbitan monooleate (Span) 80. Micellar and interfacial parameters, dispersion effectiveness, as well as the toxicity and biodegradability of the developed formulation were investigated. Micellar properties confirmed a high degree of synergism among the surfactant molecules and the formation of stable micelle. The dispersion effectiveness, at dispersant-to-oil ratio (DOR) of 1:25 (v/v), against three crude oils (Arab, Ratawi, and Doba) was assessed. We achieved a dispersion effectiveness of 68.49%, 74.05%, and 83.43% for Ratawi, Doba, and Arab crude oil, respectively, using a 70:30 (w/w) ratio of Span 80 to [BMIM][Lausar]. Furthermore, the results obtained from optical microscopy and particle size analysis (PSA) indicated that the oil droplet size decreased with higher DOR. Additionally, acute toxicity experiments were conducted on zebrafish (Danio rerio) using the developed formulation, confirming its non-toxic behavior, with LC50 values of 800 mg/L after 96 h. The formulation also exhibited high biodegradability, with only 25.01% of the original quantity remaining after 28 days. Hence, these results suggest that the new formulation has the potential to be a highly effective and environmentally friendly dispersant for oil spill remediation.


Subject(s)
Ionic Liquids , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Ionic Liquids/toxicity , Petroleum Pollution/analysis , Zebrafish , Surface-Active Agents/chemistry , Petroleum/toxicity , Petroleum/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
11.
Plants (Basel) ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765499

ABSTRACT

To investigate the toxic effects of lead (Pb) on key metabolic activities essential for proper germination and seedling growth of maize seeds, experiments were carried out with different levels of Pb (0 to 120 mg of Pb L-1 as PbCl2) applied through growth medium to two maize hybrids H-3310S and H-6724. The research findings indicated that growth and metabolic activities were adversely affected by increased Pb contamination in growth medium; however, a slow increase in these parameters was recorded with increasing time from 0 to 120 h. Protease activity decreased with an increase in the level of Pb contamination but increased with time; consequently, a reduction in seed proteins and an increase in total free amino acids were observed with time. Similarly, α-amylase activity decreased with an increase in Pb concentration in growth medium while it increased with increasing time from 0 to 120 h; consequently, reducing and non-reducing sugars increased with time but decreased with exposure to lead. The roots of both maize hybrids had higher Pb contents than those of the shoot, which decreased the uptake of nitrogen, phosphorus, and potassium. All these nutrients are essential for optimal plant growth; therefore, the reduction in growth and biomass of maize seedlings could be due to Pb toxicity that altered metabolic processes, as sugar and amino acids are necessary for the synthesis of metabolic compounds, rapid cell division, and proper functioning of enzymes in the growing embryo, but all were dramatically reduced due to suppression of protease and α-amylase by toxicity of Pb. In general, hybrid H-3310S performed better in Pb-contaminated growth medium than H-6724.

12.
Environ Res ; 237(Pt 1): 116879, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37579965

ABSTRACT

The main obstacles in adopting solvent-based CO2 capture technology from power plant flue gases at the industrial scale are the energy requirements for solvent regeneration and their toxicity. These challenges can be overcome using new green and more stable ionic liquids (ILs) as solvents for post-combustion CO2 capture. In the current study, tributyl-tetradecyl-phosphonium chloride [P44414][Cl] as an IL, was immobilized on hydrophobic porous supports of polypropylene (PP), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE) at 298 ± 3 K and pressures up to 2 bar. The surface morphology indicated homogenous immobilization of the IL on the membrane support. Supported ionic liquid membranes (SILMs) were tested for CO2 permeability and CO2/N2 selectivity. None of the SILMs exhibited IL leaching up to 2 bar. The PTFE-based SILM performed better than other supports with minimum loss in water contact angle (WCA) and achieved good antiwetting with a maximum CO2 permeability and selectivity over N2 of 2300 ± 139 Barrer and 31.60 ± 2.4, respectively. This work achieves CO2 permeability about two-fold more than other works having CO2/N2 selectivity range of 25-35 in similar SILMs. The diffusivity of CO2 and N2 in [P44414][Cl] was measured as 3.64 ± 0.18 and 2.01 ± 0.09 [10-8 cm2 s-1] and CO2 and N2 solubility values were 9.79 ± 0.47 and 0.19 ± 0.001 [10-2 cm3(STP) cm-3 cmHg-1], respectively. The high values of Young's modulus and tensile strength of the PTFE support-based SILM (234 ± 12 MPa and 6.07 ± 0.31 MPa, respectively) indicated the long-term application of SILM in flue gas separation. The results indicated phosphonium chloride-based ILs could be better solvent candidates for CO2 removal from large volumes of flue gases than amine-based ILs.

13.
Plant Physiol Biochem ; 201: 107914, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37515893

ABSTRACT

The present study was conducted to determine the effect of indole acetic acid (IAA) and Citrate Capped Silver Nanoparticles (Cit-AgNPs) on various attributes of maize under induced salinity stress. Seeds of the said variety were collected from Cereal Crop Research Institute (CCRI) Pirsabaq, Nowshera, sterilized and sown in earthen pots filled with 2 kg silt and soil (1:2) in triplicates in the green house of the Botany Department, University of Peshawar. Nanoparticles were analyzed by scanning electron microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Thermo-gravimetric analysis (TGA) and Differential thermal analysis (DTA). Results of SEM revealed spherical morphology of Cit-AgNPs while EDX showed various elemental composition. TGA showed dominant weight loss up to 300 °C while the DTA showed major exothermic peaks at 420 °C. High Salinity concentration (80 mM) imposed significant detrimental impacts by reducing the agronomic attributes, photosynthetic pigments, osmolytes and antioxidant enzymes, which was remarkably ameliorated by the foliar application of Cit-AgNPs and IAA. Agronomic attributes including leaf, root and shoot fresh and dry weight was improved by 52-74%, 43-69% and 36-79% in individual as well as combined treatments of IAA and NPs. Photosynthetic pigments were amplified by 35-63%, total osmolytes were augmented by 39-68% and antioxidant enzymes including SOD and POD were boosted by 42-57% and 37-62% respectively, in combined as well as individual application. Conclusively, Cit-AgNPs are considered as salt mitigating entities that enhance the tolerance level of crop plants along with IAA, which may be beneficial for the plants growing in saline stressed environment.


Subject(s)
Antioxidants , Metal Nanoparticles , Antioxidants/chemistry , Metal Nanoparticles/chemistry , Citric Acid , Silver/pharmacology , Silver/chemistry , Zea mays , Salt Stress
14.
Immunobiology ; 228(3): 152390, 2023 05.
Article in English | MEDLINE | ID: mdl-37100019

ABSTRACT

BACKGROUND: Atopic Dermatitis (AD) is a multifactorial cutaneous disorder associated with chronic inflammation of the skin. Growing evidence points to TGF-ß/SMAD signaling as a key player in mediating inflammation and the subsequent tissue remodeling, often resulting in fibrosis. This study investigates the role of a core transcription factor involved in TGF-ß signaling i.e., SMAD3 genetic variants (rs4147358) in AD predisposition and its association with SMAD3 mRNA expression, serum IgE levels, and sensitization to various allergens in AD patients. METHODS: A total of 246 subjects including 134 AD cases and 112 matched healthy controls were genotyped for SMAD3 intronic SNP by PCR-RFLP. mRNA expression of SMAD3 was determined by quantitative Real-Time PCR (qRT-PCR), Vitamin-D levels by chemiluminescence, and total serum IgE levels by ELISA. In-vivo allergy testing was performed for the evaluation of allergic reactions to house dust mites (HDM) and food allergens. RESULTS: A significantly higher frequency of mutant genotype AA (cases: 19.4% vs controls: 8.9%) (OR = 2.8, CI = 1.2 - 6.7, p = 0.01) was observed in AD cases. The mutant allele 'A' also showed a 1.9-fold higher risk for AD compared to the wild allele 'C' indicating that the carriers of the A allele have a higher risk for AD predisposition (OR-1.9, CI = 1.3-2.8, p < 0.001). In addition, quantitative analysis of SMAD3 mRNA in peripheral blood showed 2.8-fold increased expression in AD cases as compared to healthy controls. Stratification analysis revealed the association of the mutant AA genotype with deficient serum Vitamin D levels (p = 0.02) and SMAD3 mRNA overexpression with HDM sensitization (p = 0.03). Furthermore, no significant association of genotypes with SMAD3 mRNA expression was observed. CONCLUSION: Our study indicates that SMAD3 intronic SNP bears a significant risk of AD development. Moreover, overexpression of SMAD3 mRNA and its association with HDM sensitization highlights the possible role of this gene in AD pathogenesis.


Subject(s)
Dermatitis, Atopic , Food Hypersensitivity , Animals , Humans , Case-Control Studies , Immunoglobulin E , Allergens , Pyroglyphidae , Inflammation , Transforming Growth Factor beta , Smad3 Protein
15.
J Biomol Struct Dyn ; 41(24): 14689-14701, 2023.
Article in English | MEDLINE | ID: mdl-36970852

ABSTRACT

The World Health Organization (WHO) proclaimed the monkeypox epidemic a "public health emergency of worldwide significance" recently. The monkeypox virus is a member of the same Orthopoxvirus genus as the smallpox virus. Although smallpox medications are advised against monkeypox, no monkeypox-specific drugs are currently available. In the event of such an outbreak, in-silico medication identification is a practical and efficient strategy. As a result, we report a computational drug repurposing analysis to discover medicines that may be potential inhibitors of thymidylate kinase, a critical monkeypox viral enzyme. The target protein structure of the monkeypox virus was modeled using the vaccinia virus's homologous protein structure. Using molecular docking and density functional theory, we found 11 possible inhibitors of the monkeypox virus from an Asinex library of 261120 chemicals. The primary purpose of this in silico work is to find possible inhibitors of monkeypox viral proteins that can then be experimentally tested in order to develop innovative therapeutic medicines for monkeypox infection.Communicated by Ramaswamy H. Sarma.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Humans , Molecular Docking Simulation , Density Functional Theory , Molecular Dynamics Simulation
16.
Chemosphere ; 311(Pt 2): 136901, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36288769

ABSTRACT

Ionic liquids (ILs) have been demonstrated as promising alternatives to conventional entrainers in separation of azeotropic mixtures mostly investigating phase equilibrium and process design scenarios. However, proper selection of ILs for a specific task always remains challenging. Hence a simulation tool, i.e. conductor like screening model for real solvents (COSMO-RS) was applied to address this challenge. Furthermore, screened ILs were simulated as entrainers for ethanol water separation by extractive distillation. The current study also aims to demonstrate a systematic approach to retrofit existing processes, by employing ILs as green entrainers. Screening of twenty-five (25) ILs was carried out using COSMO-RS to select suitable ILs as green entrainers based on activity coefficient, capacity and selectivity. Results illustrated that tetramethylammonium chloride ([TMAm][Cl]) due to its strong hydrogen bonding ability was found to be the best ILs entrainer. Moreover, in order to reduce the operating costs without compromising desired product purity (ethanol purity ≥99.5% in top product), the selected ILs (8 kg/h) in a mixture with ethylene glycol (72 kg/h) were simulated using Aspen plus v.11. The simulation results revealed that by combining tetramethylammonium chloride (2 kg/h) with ethylene glycol (78 kg/h) reduced 7.26 tons of CO2 emissions/year through heat integration by saving 1.49*108 kJ/year energy besides minimizing operating costs. In conclusion, the systematic selection of ILs as green entrainers in combination with ethylene glycol and then the appropriate simulation of the whole system will ultimately reduce the cost of the separation process and reduce the emission of greenhouse gases as well utilization of toxic conventional entrainers.

17.
Foods ; 12(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38231601

ABSTRACT

The demand for ethical foods is rising, with halal foods playing a significant role in this trend. However, halal standards vary globally, which can have substantial implications. Multiple Halal Certification Bodies (HCBs) can approve food products but they often prioritize national regulations over international alignment. To explore the similarities and differences in halal standards, we conducted a critical analysis of various standards, including Pakistan's halal standards, the Standards and Metrology Institute for Islamic Countries, Majlis Ugama Islam Singapore, Majelis Ulama Indonesia, GCC Standardization Organization, Jabatan Kemajuan Islam Malaysia, ASEAN General Guideline, and the halal standards of Thailand, Iran, and Brunei, through a literature survey. While some commonalities exist, differences stemming from various Islamic schools of thought pose challenges for regulators, consumers, and food producers. Controversial issues include stunning, slaughtering, aquatic animals, insects, and labeling requirements. For example, all standards except the GSO allow non-Muslim slaughterers, and stunning is permitted in all standards except those of Pakistan. These disparities underscore the need for standardization and harmonization in the halal food industry to meet the growing demand for ethical foods.

18.
Chem Biodivers ; 19(9): e202200399, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35977918

ABSTRACT

Some bioactive derivatives of indeno[1,2-c]pyrazolones were synthesized through the reaction of phenylhydrazine, different aldehydes and indan-1,2,3-trione at room temperature in acetonitrile. Analytical and spectroscopic studies have confirmed the structural characteristics of the synthesized compounds. In addition, the target compounds were screened for the in-vitro antiproliferative properties against the B16F10 melanoma cancer cell lines by the standard MTT assay. The effect on inflammatory marker cyclooxygenase 2 and matrix metalloproteinase 2, 9 was also checked to determine the anti-inflammatory and anti-cell migratory properties of these compounds. The final compounds were also tested for their tyrosinase inhibitory activity. Among all compounds, screened for anticancer activity, three compounds 4e, 4f and 4h reduced the cell proliferation significantly comparable to that of the positive standard drug erlotinib (IC50 =418.9±1.54 µM) with IC50 values ranging from 20.72-29.35 µM. The compounds 4c-4h decreased the COX-2 expression whereas the MMP 2, 9 expressions were significantly reduced by 4a, 4b and 4h. This was confirmed by molecular docking studies, as 4e, 4f and 4h displayed good interactions with the active site of BRAF protein. The compounds 4b, 4f and 4h exhibited moderate tyrosinase inhibition effect as compared to α-MSH. Collectively, compound 4h can be considered as a candidate for further optimization in the development of anticancer therapies based on the results of biological investigations in this study.


Subject(s)
Antineoplastic Agents , Pyrazolones , Acetonitriles/pharmacology , Aldehydes/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Cyclooxygenase 2/metabolism , Drug Screening Assays, Antitumor , Erlotinib Hydrochloride/pharmacology , Indans/pharmacology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/pharmacology , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/metabolism , Phenylhydrazines/pharmacology , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/pharmacology , Pyrazolones/pharmacology , Structure-Activity Relationship , alpha-MSH/pharmacology
19.
Front Plant Sci ; 13: 948736, 2022.
Article in English | MEDLINE | ID: mdl-35979075

ABSTRACT

The development of food and forage crops that flourish under saline conditions may be a prospective avenue for mitigating the impacts of climate change, both allowing biomass production under conditions of water-deficit and potentially expanding land-use to hitherto non-arable zones. Here, we examine responses of the native halophytic shrub Atriplex leucoclada to salt and drought stress using a factorial design, with four levels of salinity and four drought intensities under the arid conditions. A. leucoclada plants exhibited morphological and physiological adaptation to salt and water stress which had little effect on survival or growth. Under low salinity stress, water stress decreased the root length of A. leucoclada; in contrast, under highly saline conditions root length increased. Plant tissue total nitrogen, phosphorus and potassium content decreased with increasing water stress under low salinity. As salt stress increased, detrimental effects of water deficit diminished. We found that both salt and water stress had increased Na+ and Cl- uptake, with both stresses having an additive and beneficial role in increasing ABA and proline content. We conclude that A. leucoclada accumulates high salt concentrations in its cellular vacuoles as a salinity resistance mechanism; this salt accumulation then becomes conducive to mitigation of water stress. Application of these mechanisms to other crops may improve tolerance and producitivity under salt and water stress, potentially improving food security.

20.
J Environ Manage ; 321: 115981, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36029630

ABSTRACT

The presence of hazardous dyes in wastewater cause disastrous effects on living organisms and the environment. The conventional technologies for the remediation of dyes from water have several bottlenecks such as high cost and complex operation. This review aims to present a comprehensive outlook of various bio-sorbents that are identified and successfully employed for the removal of dyes from aqueous environments. The effect of physicochemical characteristics of adsorbents such as surface functional groups, pore size distribution and surface areas are critically evaluated. The adsorption potential at different experimental conditions of diverse bio-sorbents has been also explored and the influence of certain key parameters like solution pH, temperature, concentration of dyes, dosage of bio-sorbent and agitation speed is carefully evaluated. The mechanism of dyes adsorption, regeneration potential of the employed bio-sorbents and their comparison with other commercial adsorbents are discussed. The cost comparison of different adsorbents and key technological challenges are highlighted followed by the recommendations for future research.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Coloring Agents/chemistry , Wastewater/chemistry , Water , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...