Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chin J Integr Med ; 28(3): 249-256, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34913151

ABSTRACT

OBJECTIVE: To explore potential natural products against severe acute respiratory syndrome coronavirus (SARS-CoV-2) via the study of structural and non-structural proteins of human coronaviruses. METHODS: In this study, we performed an in-silico survey of 25 potential natural compounds acting against SARS-CoV-2. Molecular docking studies were carried out using compounds against 3-chymotrypsin-like protease (3CLPRO), papain-like protease (PLPRO), RNA-dependent RNA polymerase (RdRp), non-structural protein (nsp), human angiotensin converting enzyme 2 receptor (hACE2R), spike glycoprotein (S protein), abelson murine leukemia viral oncogene homolog 1 (ABL1), calcineurin-nuclear factor of activated T-cells (NFAT) and transmembrane protease serine 2. RESULTS: Among the screened compounds, amentoflavone showed the best binding affinity with the 3CLPRO, RdRp, nsp13, nsp15, hACE2R. ABL1 and calcineurin-NFAT; berbamine with hACE2R and ABL1; cepharanthine with nsp10, nsp14, nsp16, S protein and ABL1; glucogallin with nsp15; and papyriflavonol A with PLPRO protein. Other good interacting compounds were juglanin, betulinic acid, betulonic acid, broussooflavan A, tomentin A, B and E, 7-methoxycryptopleurine, aloe emodin, quercetin, tanshinone I, tylophorine and furruginol, which also showed excellent binding affinity towards a number of target proteins. Most of these compounds showed better binding affinities towards the target proteins than the standard drugs used in this study. CONCLUSION: Natural products or their derivatives may be one of the potential targets to fight against SARS-CoV-2.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Humans , Mice , Molecular Docking Simulation , SARS-CoV-2
2.
Cell Mol Biol (Noisy-le-grand) ; 66(4): 28-32, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32583787

ABSTRACT

Metallo-drugs have gained a huge attention among scientific community in the couple years. These drugs types have become important compounds in cancer therapy, where, for instance, platinum complexes are being used against many tumors worldwide. Nonetheless, to p-cymene metallo-derivatives a promising anticancer potential has also been increasingly proposed. In this sense, the present review aims to provide an in-depth revision of p-cymene metallo-drugs possible mechanisms of anticancer action for upcoming pharmaceutical and biotechnological prospects. p-cymene metallo-derivatives have revealed very interesting anticancer activities in various test systems, including cancer cells, being thus worth of note to deepen knowledge through clinical trials on their upcoming use for cancer chemotherapy combination.


Subject(s)
Antineoplastic Agents/pharmacology , Cymenes/pharmacology , Metals/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cymenes/chemistry , Cymenes/therapeutic use , Humans , Metals/therapeutic use , Neoplasms/drug therapy
3.
Cell Mol Biol (Noisy-le-grand) ; 66(4): 33-36, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32583788

ABSTRACT

Sinularin ((9E)-13-hydroxy-4,9,13-trimethyl-17-methylidene-5,15-dioxatricyclo[12.3.1.0(4,6)] octadec-9-en-16-one) is the soft coral-derived hopeful biologically active lead compound. In this review sinularin biological activities are summarized. For that, an up-to-date (from 1980 to Mar 2020) search was made in the PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society, Clinicaltrials.gov, and Google Scholar databases. Data available suggest that sinularin has interesting anti-inflammatory, anticancer, anti-fouling and analgesic potential. The inducible nitric oxide synthase (iNOS), cyclooxigenase (COX)-2, tumor growth factor beta 1 (TGF-ß1) are the most efficient enzymes for interacting with sinularin due to its anti-inflammatory activity, while phosphoinositol 3-kinase (PI3K), Akt and mechanistic target of rapamycin (mTOR) for its anticancer effect. In conclusion, sinularin seems to be a promissory lead compound in the treatment of inflammation, cancer and neurological disorders.


Subject(s)
Diterpenes/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Animals , Biofouling , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...