Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38475561

ABSTRACT

The current study was carried out to screen 10 isolates (ARS-01-ARS-10) of Rhizoctonia. solani from potato tubers cv. Kuroda, which were collected from various potato fields in Multan, Pakistan. The isolates were found to be morphologically identical, as the hyphae exhibit the production of branches at right angles and acute angles often accompanied by septum near the emerging branches. Anastomosis grouping showed that these isolates belonged to AG-3. A pathogenicity test was performed against the susceptible Kuroda variety and among the isolates, ARS-05 exhibited the highest mean severity score of approximately 5.43, followed by ARS-09, which showed a mean severity score of about 3.67, indicating a moderate level of severity. On the lower end of the severity scale, isolates ARS-06 and ARS-07 displayed mean severity scores of approximately 0.53 and 0.57, respectively, suggesting minimal symptom severity. These mean severity scores offer insights into the varying degrees of symptom expression among the different isolates of R. solani under examination. PCoA indicates that the severe isolate causing black scurf on the Kuroda variety was AG-3. A comprehensive analysis of the distribution, genetic variability, and phylogenetic relationships of R. solani anastomosis groups (AGs) related to potato crops across diverse geographic regions was also performed to examine AG prevalence in various countries. AG-3 was identified as the most widespread group, prevalent in Sweden, China, and the USA. AG-5 showed prominence in Sweden and the USA, while AG-2-1 exhibited prevalence in China and Japan. The phylogenetic analysis unveiled two different clades: Clade I comprising AG-3 and Clade II encompassing AG-2, AG-4, and AG-5, further subdivided into three subclades. Although AGs clustered together regardless of origin, their genetic diversity revealed complex evolutionary patterns. The findings pave the way for region-specific disease management strategies to combat R. solani's impact on potato crops.

2.
Environ Sci Pollut Res Int ; 30(36): 86189-86201, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37402048

ABSTRACT

Heavy metals are environmental pollutants and carcinogenic for human health if ingested. In developing countries, including Pakistan, untreated sewerage water is one of the major sources of irrigation for vegetable production in the vicinities of urban areas which might be toxic to human health due to heavy metals contamination. The present study was conducted to investigate the uptake of heavy metals by sewage water application and its impact on human health. The experiment consisted of five vegetable crops (Raphanus sativus L, Daucus carota, Brassica rapa, Spinacia oleracea, and Trigonella foenum-graecum L.) and two irrigation sources (clean water irrigation and sewage water irrigation). Each treatment was three time replicated for all five vegetables, and standard agronomic practices were applied. The results demonstrated that shoot and root growth in radish, carrot, turnip, spinach, and fenugreek was enhanced significantly with sewerage water, probably due to enhanced organic matter. However, pithiness was observed in the root of radish under sewerage water treatment. Very high concentrations of Cd, up to 7.08 ppm in turnip roots while up to 5.10 ppm in fenugreek shoot, were observed, and other vegetables also contained higher concentrations of Cd. Zn concentrations in the edible parts of carrot (control (C) = 129.17 ppm, sewerage (S) = 164.10 ppm), radish (C = 173.73 ppm, S = 253.03), turnip (C = 109.77 ppm, S = 149.67 ppm), and fenugreek (C = 131.87 ppm, S = 186.36 ppm) were increased by sewerage water treatment but a decrease in Zn concentration in spinach (C = 262.17 ppm, S = 226.97 ppm) was observed. Fe concentration in edible parts of carrot (C = 888.00 ppm, S = 524.80 ppm), radish (C = 139.69 ppm, S = 123.60 ppm), turnip (C = 195.00 ppm, S = 121.37 ppm), and fenugreek (C = 1054.93 ppm, S = 461.77 ppm) were also decreased by sewerage water treatment while spinach leaves had accumulated higher Fe (C = 1560.33 ppm, S = 1682.67 ppm) in sewerage water treatment. The highest bioaccumulation factor value was 4.17 for Cd in carrots irrigated with sewerage water. The maximum value of bioconcentration factor was 3.11 for Cd in turnip under control, and the highest value of translocation factor was 4.82 in fenugreek irrigated with sewerage water. Daily intake of metals and health risk index (HRI) calculation indicated that HRI for Cd was more than 1, suggesting toxicity in these vegetables while HRI for Fe and Zn is still under safe limit. Correlation analysis among different traits of all vegetables under both treatments revealed valuable information for selecting traits in the next crop breeding programs. It is concluded that untreated sewerage-irrigated vegetables, highly contaminated with Cd, are potentially toxic for human consumption and should be banned in Pakistan. Furthermore, it is suggested that the sewerage water should be treated to eliminate toxic compounds, particularly Cd, before irrigation usage and non-edible/phytoremediation crops might be grown in contaminated soils.


Subject(s)
Metals, Heavy , Raphanus , Soil Pollutants , Humans , Sewage/analysis , Vegetables , Cadmium/analysis , Environmental Monitoring , Agricultural Irrigation/methods , Soil Pollutants/analysis , Plant Breeding , Metals, Heavy/analysis , Risk Assessment , Soil
3.
Saudi J Biol Sci ; 30(7): 103686, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37292254

ABSTRACT

The purpose of the current study was to document the variety of predatory spider species present in the cotton fields of two major cotton-producing districts in Punjab, Pakistan, as well as the population dynamics of those spiders. The research was carried out between May and October 2018 and 2019. Manual picking, visual counting, pitfall traps, and sweep netting were the procedures used to collect samples on a biweekly basis. A total of 10,684 spiders comprising 39 species, 28 genera, and 12 families were documented. Araneidae and Lycosidae families contributed a major share to the overall catch of spiders, accounting for 58.55 percent of the total. The Araneidae family's Neoscona theisi ) was the most dominating species, accounting for 12.80% of the total catch and being the dominant species. The estimated spider species diversity was 95%. Their densities were changed over time in the study, but they were highest in the second half of September and the first half of October of both years. The cluster analysis distinguished the two districts and the sites chosen. There was a relationship between humidity and rainfall and the active density of spiders; however, this association was not statistically significant. It is possible to increase the population of spiders in an area by reducing the number of activities detrimental to spiders and other useful arachnids. Spiders are considered effective agents of biological control throughout the world. The findings of the current study will help in the formulation of pest management techniques that can be implemented in cotton growing regions all over the world.

4.
Plants (Basel) ; 12(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36771542

ABSTRACT

Weed infestation is a prime challenge coupled with lowering crop production owing to their competition with crop plants for available resources such as nutrients, water, space, moisture, and sunlight. Among weed control methods, the implementation of synthetic herbicides offers an instant solution for getting rid of weeds; however, they are a direct source of potential hazards for humans and generate resistance against synthetic weedicides, making them less effective. Allelopathy is something that happens in nature that can be used as a weed control method that increases crop yield and decreases dependency on synthetic chemicals. The mode of action of some phytochemicals corresponds to synthetic herbicides. Due to this feature, allelochemicals are used as bio-herbicides in weed management and prove more environmentally friendly than synthetic weedicides. The present investigation aims to assess the ultra-responses of A. tenuifolius and C. arvensis, while growing them in a pot experiment. Various levels of shoot extract (L2, L3, and L4) of T. portulacastrum along with the L1 (distilled water) and L5 (synthetic herbicide) were applied to the weeds. Results indicated that aqueous extracts of shoot of T. portulacastrum significantly (p ≤ 0.05) affect all the measured traits of weeds and their effects were concentration specific. All morphological parameters were suppressed due to biotic stress with an increase in free amino acids and calcium ions along with a decline in metaxylem cell area and cortical thickness in the root, while the vascular bundle area increased. The shoot extract intrusive with metabolisms corresponded with the synthetic herbicide. It is concluded that Trianthema shoot extract has a powerful phytotoxic impact on weeds (A. tenuifolius and C. arvensis) and can be used in bio-herbicide production.

5.
Saudi J Biol Sci ; 30(2): 103521, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36561331

ABSTRACT

The present study aimed to record seasonal dynamics and diversity of different insect pests in cotton agroecosystems. Two well-known cotton growing districts i.e. district Layyah and Vehari were selected for the study from the cotton belt of Punjab, Pakistan. Sampling was done bi-weekly for two consecutive years from July to October during 2018 and 2019. Sweep netting, visual counting, hand picking, wet finger method, beat sheets, aspirator and pitfall trapping methods were used for collection. Shannon-Wiener and Simpson indices were used to compute diversity while Menhinick and Margalef indices were used for the estimation of species richness. A total of 94,343 individuals representing 43 species, 40 genera, 28 families and 6 orders were recorded. Family Aleyrodidae dominated over other pest families. Bemisia tabaci (Gennadius, 1889) of family Aleyrodidae was the dominant species with 39.68% share among all pest species. Estimated species richness of all arthropod pest species belonging to both districts were about 94%. The densities of pests fluctuated with time. The peaks of sucking pest densities were observed in July and August while densities of chewing pests peaked in late September or early October each year. Population densities of jassids Amrasca biguttula (Ishida), armyworm Spodoptera litura (Fabricius), and pink bollworm Pectinophora gossypiella (Saunders), showed strong negative correlation with temperature, humidity and rainfall while thrips population density showed positive correlation with these parameters. Minor loss due to pests are acceptable everywhere, but it is only possible when their populations remain below their economic threshold levels. Present study will aid to design pest management strategies in cotton growing areas round the globe.

6.
Genes (Basel) ; 13(12)2022 12 19.
Article in English | MEDLINE | ID: mdl-36553683

ABSTRACT

Rhizoctonia solani is a species complex composed of many genetically diverse anastomosis groups (AG) and their subgroups. It causes economically important diseases of soybean worldwide. However, the global genetic diversity and distribution of R. solani AG associated with soybean are unknown to date. In this study, the global genetic diversity and distribution of AG associated with soybean were investigated based on rDNA-ITS sequences deposited in GenBank and published literature. The most prevalent AG, was AG-1 (40%), followed by AG-2 (19.13%), AG-4 (11.30%), AG-7 (10.43%), AG-11 (8.70%), AG-3 (5.22%) and AG-5 (3.48%). Most of the AG were reported from the USA and Brazil. Sequence analysis of internal transcribed spacers of ribosomal DNA separated AG associated with soybean into two distinct clades. Clade I corresponded to distinct subclades containing AG-2, AG-3, AG-5, AG-7 and AG-11. Clade II corresponded to subclades of AG-1 subgroups. Furthermore, AG and/or AG subgroups were in close proximity without corresponding to their geographical origin. Moreover, AG or AG subgroups within clade or subclades shared higher percentages of sequence similarities. The principal coordinate analysis also supported the phylogenetic and genetic diversity analyses. In conclusion, AG-1, AG-2, and AG-4 were the most prevalent AG in soybean. The clade or subclades corresponded to AG or AG subgroups and did not correspond to the AG's geographical origin. The information on global genetic diversity and distribution will be helpful if novel management measures are to be developed against soybean diseases caused by R. solani.


Subject(s)
Genetic Variation , Glycine max , Genetic Variation/genetics , Glycine max/genetics , Phylogeny , Genetics, Population , DNA, Ribosomal
7.
Front Plant Sci ; 13: 927229, 2022.
Article in English | MEDLINE | ID: mdl-36304399

ABSTRACT

Optimizing nitrogen (N) fertilization without sacrificing grain yield is a major concern of rice production system because most of the applied N has been depleted from the soil and creating environmental consequences. Hence, limited information is available about nutrient management (NM) performance at a specific site under alternate wetting and drying (AWD) irrigation compared to conventional permanent flooding (PF). We aimed to inquire about the performance of NM practices compared to the farmer's fertilizer practice (FFP) under PF and AWD on rhizospheric nitrifier and denitrifier abundance, rice yield, plant growth, and photosynthetic parameters. Two improved NM practices; nutrient management by pig manure (NMPM); 40% chemical N replaced by pig manure (organic N), and nutrient management by organic slow-release fertilizer (NMSR); 40% chemical N replaced by organic slow-release N were compared. The results showed an increased total grain yield (16.06%) during AWD compared to PF. Compared to conventional FFP, NMPM, and NMSR significantly increased the yields by 53.84 and 29.67%, respectively, during AWD. Meanwhile, PF prompted a yield increase of 45.07 and 28.75% for NMPM and NMSR, respectively, (p < 0.05) compared to FFP. Besides, a significant correlation was observed between grain yield and nitrogen content during AWD (R 2 = 0.58, p < 0.01), but no significant correlation was observed during PF. The NMPM contributed to photosynthetic attributes and the relative chlorophyll content under both watering events. Moreover, relatively higher abundances of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were observed during AWD, and the highest value was found after the late panicle stage. Our results suggest that the AWD-NMPM model is the best option to stimulate nitrifier and denitrifier gene abundance and promote rice production.

8.
Polymers (Basel) ; 13(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34578067

ABSTRACT

Currently, the global agriculture productivity is heavily relied on the use of chemical fertilizers. However, the low nutrient utilization efficiency (NUE) is the main obstacle for attaining higher crop productivity and reducing nutrients losses from these fertilizers to the environment. Coating fertilizer with micronutrients and biopolymer can offer an opportunity to overcome these fertilizers associated problems. Here, we coated urea with zinc sulphate (ZnS) and ZnS plus molasses (ZnSM) to control its N release, decrease the ammonia (NH3) volatilization and improve N utilization efficiency by sunflower. Morphological analysis confirmed a uniform coating layer formation of both formulations on urea granules. A slow release of N from ZnS and ZnSM was observed in water. After soil application, ZnSM decreased the NH3 emission by 38% compared to uncoated urea. Most of the soil parameters did not differ between ZnS and uncoated urea treatment. Microbial biomass N and Zn in ZnSM were 125 and 107% higher than uncoated urea, respectively. Soil mineral N in ZnSM was 21% higher than uncoated urea. Such controlled nutrient availability in the soil resulted in higher sunflower grain yield (53%), N (80%) and Zn (126%) uptakes from ZnSM than uncoated fertilizer. Hence, coating biopolymer with Zn on urea did not only increase the sunflower yield and N utilization efficiency but also meet the micronutrient Zn demand of sunflower. Therefore, coating urea with Zn plus biopolymer is recommended to fertilizer production companies for improving NUE, crop yield and reducing urea N losses to the environment in addition to fulfil crop micronutrient demand.

9.
PLoS One ; 16(9): e0250678, 2021.
Article in English | MEDLINE | ID: mdl-34473720

ABSTRACT

Apricot bud gall mite, Acalitus phloeocoptes (Nalepa), is a destructive arthropod pest that causes significant economic losses to apricot trees worldwide. The current study explores the ways to understand the mode of dispersal of A. phloeocoptes, the development and ultrastructure of apricot bud gall, and the role of phytohormones in the formation of the apricot bud galls. The results demonstrated that the starch granules in the bud axon were extended at the onset of the attack. During the later stages of the attack, the cytoplasm was found to deteriorate in infected tissues. Furthermore, we have observed that the accumulation of large amounts of cytokinin (zeatin, ZT) and auxin (indoleacetic acid, IAA) led to rapid bud proliferation during rapid growth period, while abscisic acid (ABA) controls the development of gall buds and plays a vital role in gall bud maturity. The reduction of gibberellic acid (GA3) content led to rapid lignification at the later phase of bud development. Overall, our results have revealed that the mechanism underlying the interaction of apricot bud gall with its parasite and have provided reliable information for designing valuable Apricot breeding programs. This study will be quite useful for pest management and will provide a comprehensive evaluation of ecology-based cost-effective control, life history and demographic parameters of A. phloeocoptes.


Subject(s)
Mites/pathogenicity , Plant Growth Regulators/metabolism , Prunus armeniaca/parasitology , Starch/metabolism , Abscisic Acid/metabolism , Animals , Cytokinins/metabolism , Female , Gibberellins/metabolism , Host-Parasite Interactions , Indoleacetic Acids/metabolism , Male , Plant Breeding , Prunus armeniaca/physiology
10.
PLoS One ; 16(6): e0253557, 2021.
Article in English | MEDLINE | ID: mdl-34143846

ABSTRACT

Tomato production in Pakistan faces significant problems of low yields due to various biotic and abiotic stresses primarily because of a narrow genetic base of the cultivars being used. Therefore, Introduction and evaluation of the exotic tomato germplasm has become necessary to acquire elite material to develop future breeding programs. To this end, the present study was conducted for the phenotypic characterization of twenty exotic tomato genotypes along with two locally grown cultivars in semi-arid subtropical climate. Data were collected for morphological, fruit quality and fruit yield traits. A significant (p<0.05) phenotypic variation was observed for all the studied traits. Maximum yield was obtained from "Rober" i.e., 1508.31 g per plant. The maximum shelf life was observed in the Cromco, with the least weight loss (2.45%) and loss in the firmness of fruit (22.61%) in 4 days. Correlation analyses revealed a strong genetic association among morphological and yield related traits. High estimates of the heritability (ranged from 79.77% to 95.01% for different traits), along with a high genetic advance (up to 34%) showed the potential usefulness of these traits and genotypes to develop breeding programs to improve the tomato yield and fruit quality.


Subject(s)
Phenotype , Plant Breeding , Solanum lycopersicum/genetics , Genetic Variation , Genotype , Pakistan , Quantitative Trait Loci
11.
Front Plant Sci ; 11: 547133, 2020.
Article in English | MEDLINE | ID: mdl-33193479

ABSTRACT

Two oilseed rape genotypes (Jiu-Er-13XI and Zheyou-50), differing in seed oil content, were subjected to cadmium (Cd) stress in hydroponic experiment. Genotypic differences were observed in terms of tolerance to Cd exposure. Cd treatment negatively affected both genotypes, but the effects were more devastating in Jiu-Er-13XI (low seed oil content) than in Zheyou-50 (high seed oil content). Jiu-Er-13XI accumulated more reactive oxygen species (ROS), which destroyed chloroplast structure and decreased photosynthetic pigments, than Zheyou-50. Total fatty acids, especially 18:2 and 18:3, severely decreased as suggested by increase in MDA content. Roots and shoots of Jiu-Er-13XI plants accumulated more Cd content, while less amount of tocopherol (Toc) was observed under Cd stress, than Zheyou-50. Conversely, Zheyou-50 was less affected by Cd stress than its counterpart. It accumulated comparatively less amount of Cd in roots and shoots, along with reduced accumulation of malondialdehyde (MDA) and ROS under Cd stress, than Jiu-Er-13XI. Further, the level of Toc, especially α-Tocopherol, was much higher in Zheyou-50 than in Jiu-Er-13XI, which was also supported by high expression of Toc biosynthesis genes in Zheyou-50 during early hours. Toc not only restricted the absorption of Cd by roots and its translocation to shoot but also scavenged the ROS generated during oxidative stresses. The low level of MDA shows that polyunsaturated fatty acids in chloroplast membranes remained intact. In the present study the tolerance of Zheyou-50 to Cd stress, over Jiu-Er-13XI, is attributed to the activities of Toc. This study shows that plants with high seed oil content are tolerant to Cd stress due to high production of Toc.

12.
Ecotoxicol Environ Saf ; 205: 111099, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32829207

ABSTRACT

Soil contamination with metallic nanoparticles is increasing due to their increased use in industrial and domestic settings. These nanoparticles are potentially toxic to soil microbes and may affect their associated functions and thereby the nutrient cycling in agro-ecosystems. This study examined the effects of iron oxides nanoparticles (IONPs) on carbon (C) and nitrogen (N) dynamics of poultry (PM) and farmyard manure (FYM) in the soil. The application of IONPs increased iron content in soil microbial biomass, which reflected its consumption by the microbes. As a result, colony-forming units of bacteria and fungi reduced considerably. Such observations lead to a decrease in CO2 emission from PM and FYM by 27 and 28%, respectively. The respective decrease fractions in the case of N mineralization were 24 and 35%. Consequently, soil mineral N content was reduced by 16% from PM and 12% from FYM as compared to their sole application without IONPs. Spinach dry matter yield and apparent N recovery were increased by the use of organic waste (FYM, PM). The use of IONPs significantly reduced the plant N recovery fraction by 26 and 24% (P < 0.05) from PM and FYM, respectively. All the results mentioned above lead us to conclude that IONPs are toxic to soil microbes and affect their function i.e., carbon and N mineralization of applied manure, and thereby the on-farm N cycling from the manure-soil-plant continuum.


Subject(s)
Ferric Compounds/toxicity , Nanoparticles/toxicity , Nitrogen Cycle , Animals , Biomass , Carbon , Ecosystem , Fertilizers , Manure/microbiology , Nitrogen , Poultry , Soil , Soil Microbiology
13.
Physiol Mol Biol Plants ; 25(6): 1435-1444, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31736546

ABSTRACT

To curb the increasing demand for nitrogenous fertilizers, it is imperative to develop new cultivars with comparatively greater nitrogen use efficiency (NUE). Nonetheless, so far very meager information is available concerning the variances among barley (Hordeum vulgare L.) varieties for their response to nitrogen deprivation. The current study was carried out to explore the potential of barley genotypes for higher NUE. A hydroponic experiment was conducted at seedling stage to compare the performance of four barley genotypes, ZD9 and XZ149 (with higher NUE) and HXRL and XZ56 (with lower NUE) in response to low (0.1 mM) and normal nitrogen (2 mM) levels. Under low N, all the genotypes expressed less number of tillers, decreased soluble proteins, chlorophyll and N concentrations in both roots and shoots, in comparison with normal N supply. However, significant differences were found among the genotypes. The genotypes with high NUE (ZD9 and XZ149) showed higher N concentration, increased number of tillers, improved chlorophyll and soluble proteins in both roots and shoots as compared to the inefficient ones (HXRL and XZ56). Furthermore, nitrate transporter gene (NRT2.1) showed higher expression under low N, both in roots and leaves of N efficient genotypes, as compared to the N inefficient ones. However, N assimilatory genes (GS1 and GS2) showed higher expression under normal and low N level, in leaves and roots respectively. The outcome of the study revealed that genotypes with higher NUE (ZD9 and XZ149) performed better under reduced N supply, and may require relatively less N fertilizer for normal growth and development, as compared to those with lower NUE. The study also revealed a time-specific expression pattern of studied genes, indicating the duration of low N stress. The current study suggested that future work must involve the time course as a key factor while studying expression patterns of these genes to better understand the genetic basis of low-N tolerance.

14.
PLoS One ; 11(3): e0149750, 2016.
Article in English | MEDLINE | ID: mdl-26930473

ABSTRACT

Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading.


Subject(s)
Arabidopsis/genetics , Brassicaceae/genetics , Cadmium/metabolism , Cation Transport Proteins/genetics , Plant Proteins/genetics , Zinc/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Base Sequence , Brassicaceae/metabolism , Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant , Metals/metabolism , Microscopy, Confocal , Molecular Sequence Data , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Stems/genetics , Plant Stems/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
15.
Front Plant Sci ; 4: 404, 2013.
Article in English | MEDLINE | ID: mdl-24187545

ABSTRACT

Noccaea caerulescens (Nc) exhibits a very high constitutive expression of the heavy metal transporting ATPase, HMA4, as compared to the non-hyperaccumulator Arabidopsis thaliana (At), due to copy number expansion and altered cis-regulation. We screened a BAC library for HMA4 and found that HMA4 is triplicated in the genome of a N. caerulescens accession from a former Zn mine near La Calamine (LC), Belgium. We amplified multiple HMA4 promoter sequences from three calamine N. caerulescens accessions, and expressed AtHMA4 and different NcHMA4 cDNAs under At and Nc HMA4 promoters in the A. thaliana (Col) hma2hma4 double mutant. Transgenic lines expressing HMA4 under the At promoter were always fully complemented for root-to-shoot Zn translocation and developed normally at a 2-µM Zn supply, whereas the lines expressing HMA4 under Nc promoters usually showed only slightly enhanced root to shoot Zn translocation rates in comparison with the double mutant, probably owing to ectopic expression in the roots, respectively. When expression of the Zn deficiency responsive marker gene ZIP4 was tested, the transgenic lines expressing AtHMA4 under an NcHMA4-1-LC promoter showed on average a 7-fold higher expression in the leaves, in comparison with the double hma2hma4 mutant, showing that this construct aggravated, rather than alleviated the severity of foliar Zn deficiency in the mutant, possible owing to expression in the leaf mesophyll.

SELECTION OF CITATIONS
SEARCH DETAIL
...