Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 11(2): 231685, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38420630

ABSTRACT

The article's main aim is to assess the mechanical behaviour of linden under high-rate loadings (impact) and its change due to changes in moisture content (MC) over fibre saturation point. For assessing the mechanical properties of green wood, mainly the data of the dried wood is not applicable since the moisture content can drastically affect the mechanical properties of the wood. By testing both dried and high-moisture-content wood, we can understand a general viewpoint toward the effect of the moisture content on the impact behaviour of the wood. Several test samples were made of linden wood with different moisture content levels of 11%, 60% and 160%. A drop-weight impact machine tested the specimens to measure the reaction force of the hammer during a very short impact period. The results of the tests were parameters such as force-time chart, the maximum force required for crack initiation, the impact bending strength (IBS) and the work needed for crack initiation. The results indicated an increase in MC decreases the maximum force, work required for crack initiation and IBS drastically. However, when MC exceeded the fibre saturation point (FSP), there was no further influence on the force pattern and maximum required force.

2.
Sci Rep ; 13(1): 6348, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072457

ABSTRACT

Wood, being renewable and highly abundant material, with excellent high specific strength and stiffness, has received increasing attention to be used in high performance applications such as the structural element of a battery case in an electric vehicle. For a successful implementation of wood in the automotive sector, it is, therefore, crucial to understand the behaviour of wood during and after temperature exposure and in the event of fire with the presence/absence of oxygen. In this study, the mechanical properties of thermally modified and unmodified European beech and birch in air and nitrogen environments at six different treatment intensities were characterised using compression tests, tensile tests, shear tests and Poisson's ratio tests. Further, the elastic properties of these wood species were quantified using the ultrasound measurements. The obtained strength and stiffness exhibited mild improvement upon moderate temperature treatment (200 °C), followed by a decrease at elevated temperature levels. This improvement was somewhat more pronounced under nitrogen treatment than under air treatment conditions. Nevertheless, a more noticeable decrease in the material performance was observed in beech compared to birch, occurring at earlier stages of modifications. This study confirms the tension-compression asymmetry of beech and birch where higher Young's moduli were obtained from tensile than from compression tests for reference and thermally treated beech and birch. The shear moduli obtained from ultrasound for birch were comparable to those obtained from quasi-static tests, whereas there was an overestimation of approximately 11-59% for the shear modulus of beech compared to quasi-static tests. Poisson's ratios from ultrasound tests corresponded well with those from quasi-static tests for untreated beech and birch, but not for thermally modified samples. The Saint-Venant model can satisfactorily predict the shear moduli of untreated and treated beech wood.

SELECTION OF CITATIONS
SEARCH DETAIL
...