Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967017

ABSTRACT

Iron oxide magnetic nanoparticles (MNPs) are crucial in various areas due to their unique magnetic properties. However, their practical use is often limited by instability and aggregation in aqueous solutions. This review explores the advanced technique of dendrimer functionalization to enhance MNP stability and expand their application potential. Dendrimers, with their symmetric and highly branched structure, effectively stabilize MNPs and provide tailored functional sites for specific applications. We summarize key synthetic modifications, focusing on the impacts of dendrimer size, surface chemistry, and the balance of chemical (e.g., coordination, anchoring) and physical (e.g., electrostatic, hydrophobic) interactions on nanocomposite properties. Current challenges such as dendrimer toxicity, control over dendrimer distribution on MNPs, and the need for biocompatibility are discussed, alongside potential solutions involving advanced characterization techniques. This review highlights significant opportunities in environmental, biomedical, and water treatment applications, stressing the necessity for ongoing research to fully leverage dendrimer-functionalized MNPs. Insights offered here aim to guide further development and application of these promising nanocomposites.

2.
ACS Appl Mater Interfaces ; 13(43): 51459-51473, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34674522

ABSTRACT

Smart polymeric composite coatings demonstrating multilevel self-healing characteristics were developed and characterized. The pH-responsive smart carriers were synthesized by loading halloysite nanotubes (HNTs) with the benzotriazole corrosion inhibitor (BTA) using the vacuum cycling method, referred to as (BTA-loaded HNTs). Similarly, mechanically triggered melamine urea-formaldehyde microcapsules encapsulated with the boiled linseed oil-self-healing agent (LO) denoted as (MUFMCs) having an average size of a ∼120 µm diameter with a wall thickness of ∼1.84 µm were synthesized by the in situ polymerization technique. The newly designed double-layered smart polymeric composite coatings (DLPCs) were developed by mixing 3 wt % BTA-loaded HNTs with epoxy and applying it on the clean steel substrate to form a primer layer. After its complete curing, a top layer of epoxy containing 5 wt % of MUFMCs was deposited on it. For an exact comparison, single-layer polymeric composite coatings (SLPCs) containing 3 wt % BTA-loaded HNTs were also developed. The Fourier transform infrared radiation spectra of MUFMCs and BTA-loaded HNTs indicate the existence of all desired functional groups, confirming the presence of loaded chemical species such as LO and BTA into the smart carriers. Thermogravimetric analysis (TGA) indicates that ∼18% BTA is successfully loaded into HNTs. Quantitative UV-spectroscopic analysis indicates a pH-responsive release of BTA from BTA-loaded HNTs, which is time-dependent, attaining its maximum value of ∼ 90% in an acidic medium after 30 h. Electrochemical impedance spectroscopy analysis conducted in 3.5 wt % NaCl solution at room temperature for different immersion times reveals that SLPC exhibits the maximum charge-transfer resistance (Rct) of 55.47 GΩ cm2 after the 7th day of immersion, and then, a declining trend is observed, reaching 26.6 GΩ cm2 after the 9th day. However, in the case of DLPC, the Rct values show a continuous increment, attaining a maximum value of 82.11 GΩ cm2 after the 9th day of immersion. The improved performance of DLPC can be ascribed to the efficient triggering of the individual carriers in the isolated matrices, resulting in the release of LO and BTA to form individual protective films at the damaged area due to the oxidative polymerization process and triazoles' ability of passive film formation on the substrate, respectively. The tempting self-healing properties of DLPCs justify their decent role for long-term corrosion protection in many industrial applications.

3.
ACS Appl Mater Interfaces ; 12(33): 37571-37584, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32686396

ABSTRACT

Novel hybrid halloysite nanotubes (HHNTs) were developed and used as smart carriers for corrosion protection of steel. For this purpose, as-received halloysite nanotubes (HNTs) were loaded with a corrosion inhibitor, imidazole (IM), by vacuum encapsulation. In the next step, a layer by layer technique was employed to intercalate another inhibitor, dodecylamine (DDA), in the polyelectrolyte multilayers of polyethylenimine and sulfonated polyether ether ketone, leading to the formation of HHNTs. During this process, IM (5 wt %) was successfully encapsulated into the lumen of HNTs, while DDA (0.4 wt %) was effectively intercalated into the polyelectrolyte layers. Later, the HHNTs (3 wt %) were thoroughly dispersed into the epoxy matrix to develop smart hybrid self-healing polymeric coatings designated as hybrid coatings. For a precise evaluation, epoxy coatings containing as-received HNTs (3 wt %) without any loading denoted to as reference coatings and modified coatings containing HNTs loaded with IM-loaded HNTs (3 wt %) were also developed. A comparative analysis elucidates that the hybrid coatings demonstrate decent thermal stability, improved mechanical properties, and promising anticorrosion properties compared to the reference and modified coatings. The calculated corrosion inhibition efficiencies of the modified and hybrid coatings are 92 and 99.8%, respectively, when compared to the reference coatings. Noticeably, the superior anticorrosion properties of hybrid coatings can be attributed to the synergetic effect of both the inhibitors loaded into HHNTs and their efficient release in response to the localized pH change of the corrosive medium. Moreover, IM shows an active release in both acidic and basic media, which makes it suitable for the protection of steel at the early stages of damage, while DDA being efficiently released in the acidic medium may contribute to impeding the corrosion activity at the later stages of deterioration. The tempting properties of hybrid coatings demonstrate the beneficial role of the development of novel HHNTs and their use as smart carriers in the polymeric matrix for corrosion protection of steel.

SELECTION OF CITATIONS
SEARCH DETAIL
...