Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Article in English | MEDLINE | ID: mdl-38771504

ABSTRACT

INTRODUCTION: Curcumin is a polyphenol with a variety of pharmacological actions. Despite its therapeutic effects and well-known safety profile, the utility of curcumin has been limited due to its deprived physical, chemical, and pharmacokinetic profile resulting from limited solubility, durability, prompt deterioration and pitiable systemic availability. Employment of an amalgamated framework integrating the potential advantages of a nanoscaffold alongside the beneficial traits of inhalational drug delivery system beautifully bringing down the restricting attributes of intended curative interventions and further assures its clinical success. AREAS COVERED: Current review discussed different application of inhalable nanocurcumin in different medical conditions. Lung diseases have been the prime field in which inhalable nanocurcumin had resulted in significant beneficial effects. Apart from this several lung protective potentials of the inhaled nanocurcumin have been discussed against severe pulmonary disorders such as pulmonary fibrosis, radiation pneumonitis and IUGR induced bronchopulmonary dysplasia. Also, application of the disclosed intervention in the clinical management of COVID-19 and Alzheimer's Disease has been discussed. EXPERT OPINION: In this portion, the potential of inhalable nanocurcumin in addressing various medical conditions along with ongoing advancements in nanoencapsulation techniques and the existing challenges in transitioning from pre-clinical models to clinical practice has been summarized.

2.
Iran J Pharm Res ; 22(1): e135315, 2023.
Article in English | MEDLINE | ID: mdl-38148890

ABSTRACT

Background: The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, and this issue is one of the major concerns in the pending years. T2DM causes numerous complications, including cognition, learning, and memory impairments. The positive effect of physical exercise as a popular approach has been shown in many chronic diseases. Further, the improvement effects of exercise on cognition and memory impairment have been noticed. Objectives: This study examines the possible preventative effects of physical exercise on spatial memory attenuation and brain mitochondrial dysfunction caused by T2DM. Methods: Male Wistar rats received treadmill exercise (30 min per day, five days per week for two or four weeks). Then, T2DM was induced by a high-fat diet and an injection of streptozotocin (30 mg/kg). Spatial learning and memory were assessed by the Morris water maze test. Further, brain mitochondrial function, including reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), mitochondrial swelling, outer membrane damage, cytochrome c release, and ADP/ATP ratio, were measured. Results: Impaired spatial memory in T2DM rats was observed. Furthermore, brain mitochondrial dysfunction was demonstrated proved by increased ROS generation, MMP collapse, mitochondrial swelling, outer membrane damage, cytochrome c release, and ADP/ATP ratio. Conversely, physical exercise, before diabetes onset, significantly ameliorated spatial memory impairment and brain mitochondrial dysfunction. Conclusions: This study reveals that physical exercise could prevent diabetes-induced spatial memory impairment. Moreover, it could ameliorate brain mitochondrial dysfunction as one of the possible underlying mechanisms of spatial memory impairment in T2DM.

3.
Drug Chem Toxicol ; : 1-13, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37501618

ABSTRACT

Chlorpyrifos (CPF) is a widely used pesticide that can impair body organs. Nonetheless, metformin is known for its protective role against dysfunction at cellular and molecular levels led by inflammatory and oxidative stress. This study aimed to investigate the modulatory impacts of metformin on CPF-induced heart and lung damage. Following the treatment of Wistar rats with different combinations of metformin and CPF, plasma, as well as heart and lung tissues, were isolated to examine the level of oxidative stress biomarkers like reactive oxygen species (ROS) and malondialdehyde (MDA), inflammatory cytokines such as tumor necrosis alpha (TNF-α), high mobility group box 1 (HMGB1) gene, deoxyribonucleic acid (DNA) damage, lactate, ADP/ATP ratio, expression of relevant genes (TRADD, TERT, KL), and along with histological analysis. Based on the findings, metformin significantly modulates the impairments in heart and lung tissues induced by CPF.

4.
Regen Ther ; 24: 43-53, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37334242

ABSTRACT

Introduction: Retinopathy of prematurity (ROP) is a vasoproliferative disease that alters retinal vascular patterns in preterm neonates with immature retinal vasculature. This study was conducted to investigate the effects of cell therapy by bone marrow mononuclear cells (BMMNC) on neurological and vascular damages in a rat model of ROP. Methods: Ten newborn Wistar rats were divided randomly into the control and the oxygen-induced retinopathy (OIR) groups. Animals in the OIR group were incubated in an oxygen chamber to induce retinopathy. One eye of animals in the OIR group received BMMNC suspension (treated eyes), and the contralateral eye received the same volume of saline injection. Then, all animals underwent funduscopy, angiography, electroretinography, histopathology and immunohistochemical assessments. Results: Compared to the saline injection group, eyes treated with BMMNC had less vascular tortuosity while veins and arteries had relatively the same caliber, as revealed by fundus examinations. Eyes in the treatment group showed significantly elevated photopic and scotopic B waves amplitude. Neovascularization in the inner retinal layer and apoptosis of neural retina cells in the treatment group was significantly lower compared to untreated eyes. Also, BMMNC transplantation decreased glial cell activation and VEGF expression in ischemic retina. Conclusions: Our results indicate that intravitreal injection of BMMNC reduces neural and vascular damages and results in recovered retinal function in rat model of ROP. Ease of extraction without in vitro processing, besides the therapeutic effects of BMMNCs, make this source of cells as a new choice of therapy for ROP or other retinal ischemic diseases.

5.
Toxicol Appl Pharmacol ; 467: 116497, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37003365

ABSTRACT

Novel psychoactive substances (NPS) consumption has increased in recent years, thus NPS-induced cognitive decline is a current source of concern. Alpha-pyrrolidinovalerophenone (α-PVP), as a member of NPS, is consumed throughout regions like Washington, D.C., Eastern Europe, and Central Asia. Mitochondrial dysfunction plays an essential role in NPS-induced cognitive impairment. Meanwhile, no investigations have been conducted regarding the α-PVP impact on spatial learning/memory and associated mechanisms. Consequently, our study investigated the α-PVP effect on spatial learning/memory and brain mitochondrial function. Wistar rats received different α-PVP doses (5, 10, and 20 mg/kg) intraperitoneally for 10 sequential days; 24 h after the last dose, spatial learning/memory was evaluated by the Morris Water Maze (MWM). Furthermore, brain mitochondrial protein yield and mitochondrial function variables (Mitochondrial swelling, succinate dehydrogenase (SDH) activity, lipid peroxidation, Mitochondrial Membrane Potential (MMP), Reactive oxygen species (ROS) level, brain ADP/ATP proportion, cytochrome c release, Mitochondrial Outer Membrane (MOM) damage) were examined. α-PVP higher dose (20 mg/kg) significantly impaired spatial learning/memory, mitochondrial protein yield, and brain mitochondrial function (caused reduced SDH activity, increased mitochondrial swelling, elevated ROS generation, increased lipid peroxidation, collapsed MMP, increased cytochrome c release, elevated brain ADP/ATP proportion, and MOM damage). Moreover, the lower dose of α-PVP (5 mg/kg) did not alter spatial learning/memory and brain mitochondrial function. These findings provide the first evidence regarding impaired spatial learning/memory following repeated administration of α-PVP and the possible role of brain mitochondrial dysfunction in these cognitive impairments.


Subject(s)
Brain Diseases , Spatial Learning , Rats , Animals , Rats, Wistar , Reactive Oxygen Species/metabolism , Cytochromes c/metabolism , Maze Learning , Mitochondria , Brain , Adenosine Triphosphate/metabolism , Hippocampus , Oxidative Stress
6.
Iran J Basic Med Sci ; 26(3): 316-325, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36865037

ABSTRACT

Objectives: Autism is a complicated neurodevelopmental disorder characterized by social interaction deficiencies, hyperactivity, anxiety, communication disorders, and a limited range of interests. The zebrafish (Danio rerio) is a social vertebrate used as a biomedical research model to understand social behavior mechanisms. Materials and Methods: After spawning, the eggs were exposed to sodium valproate for 48 hr, after which the eggs were divided into eight groups. Except for the positive and control groups, there were six treatment groups based on oxytocin concentration (25, 50, and 100 µM) and time point (24 and 48 hr). Treatment was performed on days 6 and 7, examined by labeling oxytocin with fluorescein-5-isothiocyanate (FITC) and imaging with confocal microscopy and the expression levels of potential genes associated with the qPCR technique. Behavioral studies, including light-dark background preference test, shoaling behavior, mirror test, and social preference, were performed on 10, 11, 12, and 13 days post fertilization (dpf), respectively. Results: The results showed that the most significant effect of oxytocin was at the concentration of 50 µM and the time point of 48 hr. Increased expression of shank3a, shank3b, and oxytocin receptor genes was also significant at this oxytocin concentration. Light-dark background preference results showed that oxytocin in the concentration of 50 µM significantly increased the number of crosses between dark and light areas compared with valproic acid (positive group). Also, oxytocin showed an increase in the frequency and time of contact between the two larvae. We showed a decrease in the distance in the larval group and an increase in time spent at a distance of one centimeter from the mirror. Conclusion: Our findings showed that the increased gene expression of shank3a, shank3b, and oxytocin receptors improved autistic behavior. Based on this study some indications showed that oxytocin administration in the larval stage could significantly improve the autism-like spectrum.

7.
Biosensors (Basel) ; 13(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36671929

ABSTRACT

In this research, a simple, label-free, and ultra-sensitive fluorescent platform based on a metal-organic framework (MOF) has been developed to detect melamine in milk powder. This fluorescence sensor was fabricated from sensitized terbium (Tb)@NH2-MIL-253 (Al) MOF using a hydrothermal method that involved combining the green emission of Tb (λem = 545 nm) with the blue emission of NH2-MIL-253(Al) MOF (λem = 430 nm) under a single excitation wavelength (λex = 335 nm). The fluorescence sensor was then used under optimized conditions (pH = 9.0; sensor concentration = 30 mg/L; response time = 30 s) to quantify melamine in milk powder. The accuracy, sensitivity, and reproducibility of this sensor were established compared to the high-performance liquid chromatography (HPLC) method. The linear range and lower limit of detection (LLOD, computed with 3σ/S) of the sensor were between 40-396.45 nM (equal to 25 µg/kg-0.25 mg/kg) and 40 nM (equal to 25 µg/kg), respectively, which is much less than the maximum residual level (MRL) for the detection of melamine in infant formula (1 mg/kg) and other foods/feeds (2.5 mg/kg). Additionally, the results had good agreement with the HPLC outcomes, suggesting that the NH2-MIL-253(Al) MOF sensing probe has great precision and repeatability. To conclude, the new fluorescence sensor developed in this study can accurately and sensitively detect melamine in food samples, which may be useful for screening for adulteration of milk powders and other foods.


Subject(s)
Metal-Organic Frameworks , Humans , Animals , Metal-Organic Frameworks/chemistry , Powders/analysis , Milk/chemistry , Reproducibility of Results , Limit of Detection
8.
Mini Rev Med Chem ; 23(13): 1390-1411, 2023.
Article in English | MEDLINE | ID: mdl-36515022

ABSTRACT

A class of organic chemicals known as polychlorinated biphenyls (PCBs) consists of chlorine, hydrogen, and carbon atoms. High boiling points, chemical stability, non-flammability, and insulating properties have enabled them to be used in various industries. Because of their high toxicity, PCBs were one of the first industrial compounds to be banned from production. These compounds have high-fat solubility with bioaccumulation and biomagnification properties in the environment, food chain, and individuals. Hence, they may have an impact not only on individual organisms but ultimately on whole ecosystems. The main sources of PCB exposure are food and environmental pollutants. In the toxicology of PCBs, oxidative stress plays the most influential function. The induction of CYP1A1 due to the high affinity of PCBs for aryl hydrocarbon receptors is considered a trigger for oxidative stress. Production of reactive oxygen species and depletion of glutathione occur due to phase Ⅰ and Ⅱ metabolism, respectively. Thus, cellular redox balance may be disrupted in the presence of PCBs and their metabolites. Chronic and long-term exposure to these compounds can often lead to life-threatening diseases, like diabetes, obesity, cardiovascular and neurological diseases, cancer, and reproductive and endocrine disorders. We present the current knowledge of the routes of PCB exposure and bioaccumulation, the outlook regarding environmental and food safety, the potential role of PCBs in various diseases, the principal mechanisms responsible for PCB toxicity, and the main detection techniques used for PCBs.


Subject(s)
Neoplasms , Polychlorinated Biphenyls , Humans , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/chemistry , Polychlorinated Biphenyls/metabolism , Ecosystem , Environmental Monitoring , Food Safety
9.
Food Chem Toxicol ; 170: 113509, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36343746

ABSTRACT

BACKGROUND: Oral targeted small molecules, including sphingosine 1 phosphate receptor (S1PR) modulators and tyrosine kinase inhibitors (TKIs), seem to revolutionize the management of inflammatory bowel disease (IBD). To select the most effective treatment, there is an unmet need to comparatively study their mechanism of action, efficacy, and toxicity in the preclinical stage and further translate it into clinical practice. METHODS: Using 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced adult zebrafish colitis model, LC50 of fingolimod and tofacitinib were determined based on the acute toxicity test to compare aquatic toxicity potential. Subsequently, the efficacy of different concentrations of tofacitinib and fingolimod was compared using flow cytometry, qPCR, and histopathology analyses. RESULTS: TNBS significantly reduced the length of villi, and the number of goblet cells increased the level of TNF-α, MyD88, and NF-κB2, the thickness of villi and necrosis, and induced histopathological changes. All of these parameters were reversed almost dose-dependently with both medications, with the highest concentration of fingolimod being superior to other groups. Additionally, results from qPCR analysis suggested that these medications might suppress canonical and non-canonical NF-κB pathways by targeting toll-like receptors and MyD88. LC50 of tofacitinib and fingolimod was 0.9014 and 0.36 mg/L, respectively. Hence, both are in the cory 1 of the Global Harmonization System (GHS) aquatic toxicity and are toxic to adult zebrafish life. CONCLUSION: Given the better efficacy of fingolimod, it is worth translating the effectiveness and safety of S1PR modulators into IBD patients and comparing them with TKIs in head-to-head studies; albeit, their toxicity should not be overlooked.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Fingolimod Hydrochloride/therapeutic use , Fingolimod Hydrochloride/adverse effects , Zebrafish/metabolism , Myeloid Differentiation Factor 88/metabolism , Colitis/chemically induced , Trinitrobenzenesulfonic Acid , Inflammatory Bowel Diseases/drug therapy
10.
Iran J Public Health ; 51(6): 1223-1231, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36447978

ABSTRACT

Background: Irritable bowel syndrome (IBS) is a highly prevalent disorder of the gut interaction characterized by abdominal discomfort and pain associated with altered bowel habits in the absence of structural abnormalities. In spite of IBS' high prevalence and disease burden across the globe, no explanations have been given as to its underlying pathophysiology. As for the treatment of IBS, there is no specific medication, and the most beneficial treatment is usually supportive therapy. Recent animal and human studies have demonstrated the therapeutic potential of curcumin or turmeric in the treatment of IBS. Methods: We systematically reviewed all available evidence supporting curcumin and turmeric's therapeutic potential in relieving IBS symptoms in the present study. For this purpose, a database search was performed using curcumin, turmeric, and IBS and all their equivalents as of the search terms in Web of Science, Pub-Med, Scopus, Ovid, Embase, and Google Scholar from1990 up to Feb 2021. The investigation was then limited to clinical trials, and then nine articles were collected for data analysis. Results: The findings of the included literature showed that curcumin and turmeric alone or in combination with other medications could improve the severity of IBS as well as the quality of life among people who suffer from IBS symptoms. Conclusion: Overall, medications containing curcumin and turmeric extract due to these compounds' anti-inflammatory effects may improve IBS symptoms, particularly abdominal pain and life quality.

11.
Front Endocrinol (Lausanne) ; 13: 1022989, 2022.
Article in English | MEDLINE | ID: mdl-36303864

ABSTRACT

Background: Diabetes-induced reproductive complications can lead to subfertility and infertility, raising the need to protect reproductive organs. There are limited medications used to improve reproductive health in diabetic patients. Melatonin, mainly produced by the pineal gland, may improve diabetes-associated reproductive complications through various mechanisms and may be a preferred candidate to protect the reproductive system. The present review aims to elucidate the underlying mechanisms of melatonin's effect on the reproductive system adversely affected by diabetes mellitus (DM). Methods: A comprehensive systematic literature electronic search was done using the PRISMA guidelines. Web of Science, PubMed, Embase, and Scopus were searched for publications up to June 2022. Search terms were selected based on the study purpose and were explored in titles and abstracts. After screening, out of a total of 169 articles, 14 pertinent articles were included based on our inclusion and exclusion criteria. Results: The results of studies using rats and mice suggest that DM adversely affects reproductive tissues, including testes and epididymis, prostate, corpus cavernosum, and ovary leading to alterations in histological and biochemical parameters compared to the normal groups. Treatment with melatonin improves oxidative stress, blocks apoptosis induced by endoplasmic reticulum stress and caspase activation, reduces pro-inflammation cytokines, and enhances steroidogenesis. Conclusion: Melatonin exerted a protective action on the impaired reproductive system in in-vivo and in-vitro models of DM. The topic has to be followed up in human pregnancy cases that will need more time to be collected and approved.


Subject(s)
Diabetes Mellitus , Melatonin , Male , Female , Humans , Rats , Mice , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/therapeutic use , Reproduction/physiology , Diabetes Mellitus/drug therapy
12.
Noncoding RNA ; 8(5)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36287118

ABSTRACT

Enhancers are distal cis-acting elements that are commonly recognized to regulate gene expression via cooperation with promoters. Along with regulating gene expression, enhancers can be transcribed and generate a class of non-coding RNAs called enhancer RNAs (eRNAs). The current discovery of abundant tissue-specific transcription of enhancers in various diseases such as cancers raises questions about the potential role of eRNAs in disease diagnosis and therapy. This review aimed to demonstrate the current understanding of eRNAs in cancer research with a focus on the potential roles of eRNAs as prognostic and diagnostic biomarkers in cancers.

13.
Toxics ; 10(4)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35448458

ABSTRACT

Chlorpyrifos (CPF) is an organophosphorus (OP) pesticide, resulting in various health complications as the result of ingestion, inhalation, or skin absorption, and leads to DNA damage and increased oxidative stress. Metformin, derived from Galega officinalis, is reported to have anti-inflammatory and anti-apoptotic properties; thus, this study aimed to investigate the beneficial role of metformin in neurotoxicity induced by sub-acute exposure to CPF in Wistar rats. In this study, animals were divided into nine groups and were treated with different combinations of metformin and CPF. Following the 28 days of CPF and metformin administration, brain tissues were separated. The levels of inflammatory biomarkers such as tumor necrosis factor alpha (TNFα) and interleukin 1ß (IL-1ß), as well as the expression of 5HT1 and 5HT2 genes, were analyzed. Moreover, the levels of malondialdehyde (MDA), reactive oxygen species (ROS), and the ADP/ATP ratio, in addition to the activity of acetylcholinesterase (AChE) and superoxide dismutase (SOD), were tested through in vitro experiments. This study demonstrated the potential role of metformin in alleviating the mentioned biomarkers, which can be altered negatively as a result of CPF toxicity. Moreover, metformin showed protective potential in modulating inflammation, as well as oxidative stress, the expression of genes, and histological analysis, in a concentration-dependent manner.

14.
Toxicol Mech Methods ; 32(4): 288-301, 2022 May.
Article in English | MEDLINE | ID: mdl-34711111

ABSTRACT

Aluminum phosphide (AlP) poisoning is common in many countries responsible for high mortality. The heart is the main target organ in AlP poisoning. Several studies have reported the beneficial effects of cannabidiol (CBD) in reducing heart injuries. This study aimed to investigate the possible protective effect of CBD on cardiac toxicity caused by AlP poisoning. Study groups included almond oil, normal saline, sole CBD (100 µg/kg), AlP (11.5 mg/kg), and four groups of AlP + CBD (following AlP gavage, CBD administrated at doses of 5, 25, 50, and 100 µg/kg via intravenous (iv) injection). Thirty minutes after AlP treatment, an electronic cardiovascular device (PowerLab) was used to record electrocardiographic (ECG) changes, heart rate (HR), and blood pressure (BP) for three hours. Cardiac tissue was examined for the activities of mitochondrial complexes, ADP/ATP ratio, the release of cytochrome C, mitochondrial membrane potential (MMP), apoptosis, oxidative stress parameter, and cardiac biomarkers at 12 and 24 hours time points. AlP administration caused abnormal ECG, decreased HR, and BP. AlP also significantly reduced mitochondrial complex I and IV activity and ADP/ATP ratio. The level of cytochrome C release, apoptosis, oxidative stress, and cardiac biomarkers was considerably increased by AlP, which was compensated following CBD administration. CBD was able to improve hemodynamic function to some extent in AlP poisoned rats. CBD restored ATP levels and mitochondrial function and decreased oxidative damage and thus, prevented the heart cells from entering the apoptotic stage. Further clinical trials are needed to explore any possible benefits of CBD in AlP-poisoned patients.


Subject(s)
Cannabidiol , Phosphines , Animals , Cannabidiol/toxicity , Electrocardiography , Heart Rate , Humans , Mitochondria , Phosphines/toxicity , Rats , Rats, Wistar
15.
Curr Med Chem ; 29(37): 5881-5894, 2022.
Article in English | MEDLINE | ID: mdl-34906054

ABSTRACT

BACKGROUND: Zearalenone is a well-known estrogenic mycotoxin produced by Fusarium species, a serious threat to the agricultural and food industries worldwide. Zearalenone, with its known metabolites, is a biomarker of exposure to certain fungi, primarily through food. It has considerable toxic effects on biological systems due to its carcinogenicity, mutagenicity, renal toxicity, teratogenicity, and immunotoxicity. INTRODUCTION: This study aims to design a simple, quick, precise, and cost-effective method on a biosensor platform to evaluate the low levels of this toxin in foodstuffs and agricultural products. METHODS: An aptamer-based electrochemical biosensor was introduced that utilizes screen-printed gold electrodes instead of conventional electrodes. The electrodeposition process was employed to develop a gold nanoparticle-modified surface to enhance the electroactive surface area. Thiolated aptamers were immobilized on the surface of gold nanoparticles, and subsequently, the blocker and analyte were added to the modified surface. In the presence of a redox probe, electrochemical characterization of differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy were used to investigate the various stages of aptasensor fabrication. RESULTS: The proposed aptasensor for zearalenone concentration had a wide linear dynamic range covering the 0.5 pg/mL to 100 ng/mL with a 0.14 pg/mL detection limit. Moreover, this aptasensor had high specificity so that a non-specific analyte cannot negatively affect the selectivity of the aptasensor. CONCLUSION: Overall, due to its simple design, high sensitivity, and fast performance, this aptasensor showed a high potential for assessing zearalenone in real samples, providing a clear perspective for designing a portable and cost-effective device.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Mycotoxins , Zearalenone , Aptamers, Nucleotide/chemistry , Biomarkers , Biosensing Techniques/methods , Electrochemical Techniques , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Zearalenone/analysis
16.
Iran J Pharm Res ; 20(2): 297-306, 2021.
Article in English | MEDLINE | ID: mdl-34567163

ABSTRACT

Changes in plasma concentration of taurine during hospitalization of acetaminophen poisoned patients have not been studied. Hepatotoxicity is a common consequence of acetaminophen overdose that may lead to acute liver failure. Numerous biomarkers for drug-induced liver injury have been explored. All biomarkers are usually obtainable 48 h following acetaminophen overdose. We have already introduced taurine as a non-specific early biomarker of acetaminophen overdose. This study aimed to follow up changes in plasma concentration of taurine during the first three days of acetaminophen overdose. Sixty-four male patients suffering from acetaminophen overdose were selected for the study. Four blood samples were taken from the patients every 12 h. Sixty blood samples were also taken from sixty healthy humans. The plasma concentration of taurine in both groups was analyzed an already developed HPLC method. Analysis of regression showed a significant correlation between means of plasma concentrations of taurine and acetaminophen, aspartate aminotransferase, Alanine aminotransferase, glutathione peroxidase, and prothrombin time during hospitalization. The high plasma concentration of taurine, 6 h or more after acetaminophen overdose, could be a useful early indicator of liver damage.

17.
Hum Exp Toxicol ; 40(12_suppl): S381-S396, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34569344

ABSTRACT

Aluminum phosphide (AlP) poisoning can be deadly in most cases targeting the heart. To overcome AlP toxicity, exenatide has been studied in the present study due to its pleiotropic effects on cardiac damages. In this study, the rats were exposed to LD50 of AlP (10 mg/kg) by gavage, and exenatide at doses (0.05, 0.1, and 0.2 mg/kg) injected intraperitoneally 30 min after poisoning. The cardiac parameters including heart rate (HR), blood pressure (BP), QRS, corrected QT (QTc), and ST were monitored for 180 min. Blood glucose level was measured in the study groups 30 min after exenatide injection. Evaluation of biochemical parameters including mitochondrial complexes I, II, and IV activities, adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio, malondialdehyde (MDA), apoptosis, lactate, troponin I, and brain natriuretic peptide (BNP) was done on heart tissues after 12 and 24 h. Additionally, the tissues were analyzed for any pathological damages including necrosis, hemorrhage, or hyperemia 24 h post-treatment. Our results showed that AlP-induced HR, BP, and electrocardiographic changes were improved by exenatide at all doses. The blood glucose levels of poisoned animals reached control levels after exenatide treatment. Besides, treatment with exenatide at all doses improved complexes I and IV activity, ADP/ATP ratio, and apoptosis. Malondialdehyde, lactate, troponin I, and BNP levels were also diminished after exenatide co-treatment in poisoned animals. On the other hand, administration of exenatide doses improved the histopathology of AlP-induced tissues. Based on our findings, exenatide has a protective effect against phosphine-induced cardiotoxicity in an almost dose-dependent way. However, further investigations are needed on the potential clinical use of exenatide in this poisoning.


Subject(s)
Aluminum Compounds/toxicity , Blood Pressure/drug effects , Electrocardiography , Exenatide/pharmacology , Heart Rate/drug effects , Incretins/pharmacology , Phosphines/toxicity , Animals , Blood Glucose/drug effects , Dose-Response Relationship, Drug , Exenatide/administration & dosage , Lethal Dose 50 , Lipid Peroxidation , Male , Random Allocation , Rats , Rats, Wistar
18.
Cancer Cell Int ; 21(1): 483, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34521402

ABSTRACT

Colorectal cancer (CRC) is one of the most malignant cancer types, characterized by elevated mortality rate and treatment resistance. Despite the progress achieved in the explanation of the molecular basis of the disease as well as introducing potential biomarkers in the clinical practice, further investigation is essential to identify innovative molecules that contribute to colorectal carcinogenesis. Circular RNAs (circRNAs) are a novel and unexplored RNA type, associated with various human pathological conditions. Recently, circRNAs have been identified to be enriched and stable in exosomes and can exert their functions when exosomes reach neighboring or distant cells. Increasing evidence indicates that these so called exosomal circRNAs (exo-circRNAs) act as signaling molecules to regulate cancer proliferation, metastasis, and sensitivity to radio- and chemotherapy. This review aims to discuss the latest progress in exo-circRNAs studies in CRC with an emphasis on their potential as promising diagnostic molecular markers and therapeutic targets.

19.
Toxicol Mech Methods ; 31(9): 631-643, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34219611

ABSTRACT

Aluminum phosphide (AlP) causes serious poisoning in which severe cardiac suppression is the significant lethal consequence. According to evidence, levosimendan can exert outstanding cardiac support and protection in different pathological conditions. This study aimed to investigate the mechanisms by which levosimendan may alleviate cardiovascular toxicity due to AlP intoxication in the rat model. The groups included control group (normal saline only), sole levosimendan groups (12, 24, 48 µg/kg), AlP group (10 mg/kg), and AlP + levosimendan groups receiving 12, 24, 48 µg/kg levosimendan intraperitoneally 30 min after AlP administration. Electrocardiographic (ECG) parameters (QRS and PR duration and ST height), heart rate, and blood pressure were monitored for 180 minutes. Also, after 24 h of poisoning, echocardiography was applied to assess left ventricle function. Evaluation of the biochemical parameters in heart tissue, including mitochondrial complexes I, II, IV activity, ADP/ATP ratio, the rate of apoptosis, malondialdehyde (MDA), lactate, and troponin I levels, were done after 12 and 24 h. AlP-induced ECG abnormalities (PR duration and ST height), reduction in heart rate, blood pressure, cardiac output, ejection fraction, and stroke volume were improved by levosimendan administration. Besides, levosimendan significantly improved complex IV activity, the ADP/ATP ratio, apoptosis, MDA, lactate, and troponin I level following AlP-poisoning. Our results suggest that levosimendan might alleviate AlP-induced cardiotoxicity by modulating mitochondrial activity and improving cardiac function. However, the potential clinical use of levosimendan in this toxicity needs more investigations.


Subject(s)
Echocardiography , Electrocardiography , Animals , Phosphines , Rats , Rats, Wistar , Simendan
20.
Food Chem Toxicol ; 154: 112347, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34139304

ABSTRACT

BACKGROUND: Aluminum phosphide (AlP) causes severe cardiotoxicity. Taurine has been chosen for the present study because of its positive known effects on cardiac injuries. METHOD: To evaluate AlP-induced cardiotoxicity, the animals were divided into seven groups, including the control group, the taurine group (500 mg/kg), AlP with LD50 dose, AlP + taurine 20, 50, 100, and 200 mg/kg group. To assess cardiac hemodynamic parameters, Wistar rats received taurine intraperitoneally 60 min after AlP gavage. Cardiac hemodynamic parameters were evaluated for 180 min. To study biochemical parameters, 24 h after AlP treatment, the animals were sacrificed, and heart tissues were collected. RESULT: ECG, BP, and HR abnormalities of AlP poisoning were improved by taurine treatment. AlP induced biochemical alterations including complexes I and IV activities, the ADP/ATP ratio, mitochondrial membrane potential, cytochrome C release, and oxidative stress biomarkers ameliorated by taurine. Moreover, taurine improved apoptosis, as well as lessened CK-MB and troponin I levels. Also, there were no significant changes between taurine 500 mg/kg and the control group in tests. CONCLUSION: The present findings showed that taurine could be a possible candidate for AlP cardiotoxicity treatment via the effect on mitochondrial electron transfer chain and maintaining intracellular ATP balance.


Subject(s)
Aluminum Compounds/toxicity , Cardiotonic Agents/therapeutic use , Cardiotoxicity/drug therapy , Phosphines/toxicity , Taurine/therapeutic use , Animals , Blood Pressure/drug effects , Cardiotoxicity/metabolism , Creatine Kinase/metabolism , Electrocardiography/drug effects , Electron Transport Chain Complex Proteins/metabolism , Heart/drug effects , Heart Rate/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/enzymology , Myocardium/enzymology , Oxidative Stress/drug effects , Rats, Wistar , Troponin I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...