Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Biotechnol ; 33(4): 404-18, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23051065

ABSTRACT

Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed.


Subject(s)
Enzymes, Immobilized/chemistry , Laccase/chemistry , Waste Disposal, Fluid/methods , Water Pollutants/chemistry , Biocatalysis , Enzymes, Immobilized/metabolism , Humans , Laccase/metabolism , Solubility , Water Pollutants/metabolism
2.
Bioresour Technol ; 128: 640-5, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23220110

ABSTRACT

Laccase and laccase-based cross-linked enzyme aggregates (CLEAs) were stabilized through the formation of a surrounding polymeric network made of chitosan and 3-aminopropyltriethoxysilane. The thermoresistance of the resulting enzyme polymer engineered structures of laccase (EPES-lac) and CLEAs (EPES-CLEA) were more than 30 times higher than that of free laccase and CLEAs at pH 3 and 40 °C. The EPES showed higher residual activity than the unmodified biocatalysts against chaotropic salts (up to 10 times), EDTA (up to 5 times), methanol (up to 15 times) and acetone (up to 20 times). The Michaelis-Menten kinetic parameters revealed that the affinity for 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) has doubled for the EPES-lac and EPES CLEA compared to their unmodified forms. The EPES-lac structures acted optimally at pH 4 and their activity was nearly temperature-independent, while the laccase activity of EPES-CLEA was optimal at pH 4 and 60 °C. Globally, the EPES have shown significantly improved properties which make them attractive candidate for the development of laccase-based applications.


Subject(s)
Chitosan/chemistry , Laccase/chemistry , Silanes/chemistry , Cross-Linking Reagents/chemistry , Enzyme Activation , Enzyme Stability , Enzymes, Immobilized/chemistry , Propylamines , Protein Engineering/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...