Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 12: 1343506, 2024.
Article in English | MEDLINE | ID: mdl-38591059

ABSTRACT

Introduction: The process of green synthesis of metal nanoparticles is considered to be eco-friendly and cost-effective. Methods: In this study, bimetallic Ag@Se-P and Ag@Se-S nanoparticles were synthesized successfully using Parkinsonia aculeata aerial parts and seed extracts. The phytochemical contents in P. aculeata aerial parts and seed aqueous extract serve as reducing and stabilizing capping agents without the need for any chemical stabilization additive in the synthesis of bimetallic nanoparticles. Result and Discussion: The obtained results from UV-vis spectrophotometry, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR) confirmed the successful synthesis of bimetallic nanoparticles with cluster irregular spherical morphology, crystalline nature, and average particle sizes of 17.65 and 24.36 nm for Ag@Se-S and Ag@Se-P, respectively. The cytotoxicity assessment of greenly synthesized nanomaterials using seed and plant extracts showed cell inhibition >50 µg/mL. Ag@Se-S and Ag@Se-P seed and plant extracts significantly reduced LPS-induced inflammation, which was assessed by NO and cytokines IL-1ß, IL-6, and TNF-α. The mRNA and protein expression levels of phosphoinositide 3 kinase (PI3K) and nuclear factor kappa B (NFkB) were significantly overexpressed in LPS-induced RAW 264.7 cell lines. Ag@Se-S and Ag@Se-P downregulated the expression of PI3K and NFkB in LPS-induced cell models.

2.
Molecules ; 27(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36557837

ABSTRACT

In the present work, the facile eco-friendly synthesis and evaluation of the anti-tumor activity of Ni(OH)2@Mn3O4 nanocomposite were carried out. The synthesis of Ni(OH)2@Mn3O4 nanocomposite from chia-seed extract was mediated by sonication. The obtained materials were characterized by different spectroscopic techniques such as transmission electron microscopy (TEM), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis), and Fourier transform infrared (FT-IR) spectroscopies. The results of XRD, SEM, EDS, TEM, FT-IR, and UV-Vis analysis indicate the successful manufacturing of a crystalline, cactus-type Ni(OH)2@Mn3O4 nanocomposite of 10.10 nm average particle size. XPS analysis confirms that the synthesized materials consist mainly of Ni2+, Mn2+, and Mn3+. The antitumor activity of the nanocomposite was tested against a breast cancer (MCF-7) cell line. The results showed Ni(OH)2@Mn3O4 nanocomposite possesses insignificant cytotoxicity. The cell-death percentage was 34% at a 100 ppm concentration of Ni(OH)2@Mn3O4 nanocomposite. The obtained results imply that the synthesized nanocomposite could be suitable and safe for drug delivery and water treatment.


Subject(s)
Nanocomposites , Humans , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Transmission , Cell Death , MCF-7 Cells , Nanocomposites/chemistry , X-Ray Diffraction
3.
Nanomaterials (Basel) ; 12(11)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35683774

ABSTRACT

Theophrasite ß-Ni(OH)2 nanocluster were fabricated via the sonochemical-assisted biogenic method using chia seeds extract as a reducing and stabilizing agent. The optical and morphological feature of the synthesized nanocluster was characterized using UV-Vis, FTIR, FE-SEM-EDS, HR-TEM, DLS, XPS, and XRD analysis. According to FE-SEM and HR-TEM images of the synthesized materials, ß-Ni(OH)2 nanocluster illustrates the hexagonal particle shape with an average size of 5.8 nm, while the EDS results confirm the high purity of the synthesized nanocluster. Moreover, the XRD pattern of the synthesized materials shows typical peaks that match the reference pattern of the Theophrasite form of ß-Ni(OH)2 with a hexagonal crystal system. The XPS analysis illustrates that the prepared samples exhibit both Ni2+ and Ni3+ with the predominance of Ni2+ species. Additionally the in-vitro cytotoxic activity of ß-Ni(OH)2 nanocluster is tested against the MCF7 cell lines (breast cancer cells). The MTT assay results proved that the synthesized ß-Ni(OH)2 nanocluster has potent cytotoxic activity against breast cancer cell lines (IC50: 62.7 µg/mL).

4.
Photochem Photobiol Sci ; 13(9): 1330-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25026362

ABSTRACT

The efficiency of singlet oxygen photosensitized by some ruthenium(ii) bipyridyl complex ions in aqueous media is reported in this study. Measurements were carried out in H2O and D2O. The effect of the deuterium isotope on the lifetime of (3)MLCT excited states of these complexes is studied in H2O and D2O. The deuterium isotope effect was discussed in terms of the vibronic coupling to the solvent in addition to the charge transfer to the solvent mechanism due to their dependence on the oxidation potential of the sensitizer. Quenching rate constants, kq, for quenching of the (3)MLCT states of these ruthenium complex ions by molecular oxygen were found to be in the range of (2.08-3.84) × 10(9) M(-1) s(-1) in H2O and (1.69-3.48) × 10(9) M(-1) s(-1) in D2O. The efficiency of singlet oxygen, O2((1)Δg), production as a result of the (3)MLCT quenching by oxygen, f, is reported in D2O and found to be in the range 0.25-0.56. It has been found that the lifetime of the excited state is longer in D2O, τ, than in H2O, τ, which was related to partial charge transfer to the solvent in addition to the vibronic coupling mechanism. Mechanisms by which the excited states of these ruthenium complexes are quenched by molecular oxygen that shows the competition between charge transfer, non-charge transfer deactivation channels or energy transfer assisted charge transfer deactivation mechanisms are reported.


Subject(s)
Coordination Complexes/chemistry , Ruthenium/chemistry , Singlet Oxygen/chemistry , 2,2'-Dipyridyl/chemistry , Coordination Complexes/chemical synthesis , Deuterium Oxide/chemistry , Kinetics , Ligands , Quantum Theory , Singlet Oxygen/metabolism , Water/chemistry
5.
Inorg Chem ; 53(3): 1570-7, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24437629

ABSTRACT

We report the first studies on the reaction between an HNO donor compound and vitamin B12 complexes. Kinetic and mechanistic studies have been carried out on the reaction between the vitamin B12 derivative aquacobalamin (H2OCbl(+)/HOCbl; pKa = 7.8) and the HNO donor Angeli's salt. Studies were carried out with aquacobalamin in excess, since nitrite also reacts with aquacobalamin to form nitrocobalamin (NO2Cbl). At pH <9.90 aquacobalamin reacts directly with the monoprotonated form of Angeli's salt, HN2O3(-), to form nitroxylcobalamin (NO(-)-Cbl(III); NOCbl) and nitrite. At pH >10.80 the reaction instead switches predominantly to a mechanism in which spontaneous decomposition of Angeli's salt to give HNO and nitrite becomes the rate-determining step, followed by the rapid reaction between aquacobalamin and HNO/NO(-) to again give NOCbl. Both reactions proceed with a 1:1 stoichiometry and formation of nitrite is confirmed using the Griess assay.


Subject(s)
Nitrites/chemistry , Vitamin B 12/analogs & derivatives , Vitamin B Complex/chemistry , Hydroxocobalamin/analogs & derivatives , Hydroxocobalamin/chemistry , Kinetics , Nitroso Compounds/chemistry , Vitamin B 12/chemistry
6.
Dalton Trans ; 39(44): 10626-30, 2010 Nov 28.
Article in English | MEDLINE | ID: mdl-20890534

ABSTRACT

The X-ray structures of three new crystals of nitroxylcobalamin (NOCbl) have been determined. Unlike our earlier reported structure in which NOCbl was partially oxidized (L. Hannibal, C. A. Smith, D. W. Jacobsen and N. E. Brasch, Angew. Chem., Int. Ed. 2007, 46, 5140), the O atom of the nitroxyl ligand is located in a single position with a N=O bond distance of 1.12-1.14 Å, consistent with a double bond. The Co-N-O angle is in the 118.9-120.3 Å range. The α-axial Co-N(dimethylbenzimidazole) (Co-NB3) bond distance is a remarkable 2.32-2.35 Å in length, ~0.1 Å longer than that reported for all other cobalamin structures. The change in the Gibbs free energy for the base-on/base-off equilibrium now correlates extremely well with the Co-NB3 bond distance, as observed for other cobalamins.


Subject(s)
Benzimidazoles/chemistry , Cobalt/chemistry , Nitrogen Oxides/chemistry , Nitrogen/chemistry , Organometallic Compounds/chemistry , Vitamin B 12/chemistry , Scattering, Small Angle , X-Ray Diffraction
8.
Dalton Trans ; (3): 424-33, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19122899

ABSTRACT

The structure of nitrosylcobalamin (NOCbl) in solution has been studied by NMR spectroscopy and the 1H and 13C NMR spectra have been assigned. 13C and 31P NMR chemical shifts, the UV-vis spectrum of NOCbl and the observed pKbase-off value of approximately 5.1 for NOCbl provide evidence that a significant fraction of NOCbl is present in the base-off, 5,6-dimethylbenzimidazole (DMB) deprotonated, form in solution. NOE-restrained molecular mechanics modelling of base-on NOCbl gave annealed structures with minor conformational differences in the flexible side chains and the nucleotide loop position compared with the X-ray structure. A molecular dynamics simulation at 300 K showed that DMB remains in close proximity to the alpha face of the corrin in the base-off form of NOCbl. Simulated annealing calculations produced two major conformations of base-off NOCbl. In the first, the DMB is perpendicular to the corrin and its B3 nitrogen is about 3.1 A away from and pointing directly at the metal ion; in the second the DMB is parallel to and tucked beneath the D ring of the corrin.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Nitroso Compounds/chemistry , Vitamin B 12/analogs & derivatives , Benzimidazoles/chemistry , Crystallography, X-Ray/methods , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Models, Molecular , Molecular Conformation , Nitrogen/chemistry , Protons , Solutions , Spectrophotometry, Ultraviolet/methods , Temperature , Thermodynamics , Vitamin B 12/chemistry
9.
Ann Chim ; 93(5-6): 607-14, 2003.
Article in English | MEDLINE | ID: mdl-12911153

ABSTRACT

Accurate determination of vanadium (V) in industrial waste water is of great importance in environmental, biological and toxicological studies. Most of kinetic spectrophotometric methods based on the catalytic effect of vanadium (V), when applied to real samples for determination of trace levels of vanadium (V) lack the satisfactory sensitivity and selectivity. This may be attributed to the serious interferences of various anions which are common pollutants in industrial waste water. The oxidation of gallic acid by ammonium persulphate, catalysed by vanadium (V) was chosen for our study. The effect of the serious interferences of various anions such as chloride, bromate, bromide, chromate, iodide, iodate, molybdate, carbonate and sulphate on the net absorbance given by 4 microg l(-1) of vanadium (V) solution were studied. The minimum concentrations of citric acid, EDTA, ascorbic acid and oxalic acid as leveling off agents required to level off interfering effects due to the aforementioned anions in the kinetic determination of vanadium (V) were 50, 70, 80 and 120 microg ml(-1), respectively. In the presence of optimum concentrations of effective leveling off agents, the dynamic range can be extended and sensitivity increased as compared with the proposed method without levelling off agents. The proposed method is a rapid, sensitive and selective method for the determination of ultra trace amounts of vanadium (V) in real samples with satisfactory results.


Subject(s)
Anions/chemistry , Industrial Waste/analysis , Vanadium/analysis , Environmental Monitoring/methods , Humans , Spectrophotometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...