Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 261(2): 293-302, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37814140

ABSTRACT

This study aimed to investigate the effects of clinorotation induced by 2-D clinostat on the growth, tropane alkaloid production, gene expression, antioxidant capacity, and cellular defense responses in the callus tissue of Hyoscyamus niger. Callus induction was conducted by putting hypocotyl explants in the MS culture medium supplemented with 1 mgL-1 2,4-D and 1 mgL-1 BAP growth regulators. The sub-cultured calli were placed on a clinostat for 0, 3, 7, and 10 days (2.24 × 10-5 g on the edge of the callus ring). Clinorotation significantly increased callus fresh weight, dry weight, protein, carbohydrate, and proline contents compared to the control, and their maximum contents were obtained after 7 and 10 days. H2O2 level enhanced under clinorotation with a 76.3% rise after 10 days compared to control and positively affected the atropine (77.1%) and scopolamine (69.2%) productions. Hyoscyamine 6-beta hydroxylase and putrescine N-methyltransferase gene expression involved in the tropane alkaloid biosynthesis were upregulated markedly with 14.2 and 17.1-folds increase after 10 days of clinorotation, respectively. The expressions of jasmonic acid, mitogen-activated protein kinase, and ethylene-responsive element-binding transcription factor were upregulated, and the activity of peroxidase and catalase showed a 72.7 and 80% rise after 10 days. These findings suggest that microgravity can enhance callogenesis by stimulating the ROS level, which can impact the antioxidant enzymes, tropane alkaloid formation, and gene expression.


Subject(s)
Hyoscyamus , Hyoscyamus/genetics , Hyoscyamus/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Rotation , Plant Roots/metabolism , Tropanes/metabolism , Tropanes/pharmacology , Gene Expression
2.
Physiol Mol Biol Plants ; 28(6): 1207-1216, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35910440

ABSTRACT

The Haematococcus pluvialis microalga is known as a main source of astaxanthin with a strong antioxidant capacity and low growth rate. The induction of growth and astaxanthin content was established in H. pluvialis alga using a static magnetic field (SMF) and tetrasodium pyrophosphate (NaPP) as an inhibitor of isopentenyl pyrophosphate (precursor of astaxanthin biosynthesis) translocator between cytosol to plastid. NaPP (0.3 mM), SMF (4 mT), and their combinations were applied to the H. pluvialis cell culture. Results showed chlorophyll a and b were induced in H. pluvialis by SMF treatment, but didn't change significantly under NaPP. Astaxanthin content enhanced under NaPP, SMF, and their combination, and the highest astaxanthin content was obtained under NaPP after 21 days (late of stationary phase) of culture. A significant increase in total phenol and flavonoid contents, and activities of phenylalanine ammonia-lyase (PAL) and DPPH were observed under both NaPP and SMF treatments. In contrast to NaPP, SMF decreased H2O2 content, which was associated with more activity of SOD and CAT enzymes. These results revealed that NaPP and SMF might stimulate both phenol and astaxanthin biosynthesis pathways by impacting the activity of enzymes, and inhibition of IPP translocation by NaPP didn't affect astaxanthin biosynthesis at the late growth phase of H. pluvialis.

3.
Plant Physiol Biochem ; 186: 157-168, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35849945

ABSTRACT

In vitro plant culture paves the way for meeting the industrial demand of pharmaceutically valuable secondary metabolites. This study intends to monitor how callus cells of Cannabis indica respond to the simulated microgravity (clinorotation; a Man-made technology). Callus initiation resulted from the culture of the leaf explant in a medium supplemented with kinetin (0.5 mgL-1) and 2, 4-D (2 mgL-1). Calli were treated with microgravity at three exposure times (0, 3, and 5 days). The microgravity treatments increased callus biomass about 2.5-fold. The clinorotation treatments transcriptionally induced the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes about 6.2-fold. The tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) genes displayed a similar upward trend in response to microgravity. The applied treatments also stimulated the expression of the ethylene-responsive element-binding proteins (ERF1B) and WRKY1 transcription factors by an average of 7.6-fold. Moreover, the simulated microgravity triggered epigenetic modification in the DNA methylation profile. The HPLC-based assessment validated the high efficacy of the clinorotation treatments to increase the concentration of cannabinoids, including Cannabigerol (CBG) and Cannabidiol (CBD). However, the clinorotated calli contained a lower concentration of Tetrahydrocannabinol (THC) than the control group. The microgravity treatments increased concentrations of proline (79%), soluble sugars (61.3%), and proteins (21.4%) in calli. The biochemical assessment revealed that the clinorotation treatments slightly increased H2O2 concentration. The upregulation in the activities of peroxidase, catalase, and phenylalanine ammonia-lyase enzymes resulted from the microgravity treatments. Both HPLC and molecular assessments validated the significant efficacy of microgravity to enhance the production of cannabinoids.


Subject(s)
Cannabinoids , Cannabis , Weightlessness , Cannabis/chemistry , Cannabis/genetics , Dronabinol , Humans , Hydrogen Peroxide
4.
Biology (Basel) ; 9(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709036

ABSTRACT

Magnetic fields are an unavoidable physical factor affecting living organisms. Lettuce seeds (Lactuca sativa var. cabitat L.) were subjected to various intensities of the static magnetic field (SMF) viz., MF0 (control), SMF1 (0.44 Tesla (T), SMF2 (0.77 T), and SMF3 (1 T) for three exposure times (1, 2, and 3 h). SMF-treated seedlings showed induction in growth parameters and metabolism comparing to control. All photosynthetic pigments were induced markedly under SMF, especially chlorophyll a. SMF at different intensities boosted osmolytes, non-enzymatic antioxidants, and the phenylalanine ammonia-lyase activity over non-magnetized seedlings. Oxidative damage criteria viz., hydrogen peroxide, superoxide radical, and lipid peroxidation, as well as polyphenol oxidase activity, were kept at low values under SMF-treated seeds relative to control, especially SMF2. Electron donors to antioxidant enzymes including nitrate reductase, nitric oxide, and hydrogen sulfide induced via SMF exposure and consequently the activities of superoxide dismutase, glutathione-S-transferases, catalase, and peroxidases family enzymes were also stimulated under SMF, whatever the intensity or the exposure period applied. All these regulations reflected on the enhancement of lettuce yield production which reached 50% over the control at SMF3. Our findings offered that SMF-seed priming is an innovative and low-cost strategy that can improve the growth, bioactive constituents, and yield of lettuce.

5.
Physiol Mol Biol Plants ; 19(4): 489-98, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24431517

ABSTRACT

Effect of penconazole (PEN) treatment on drought-stressed Mentha pulegium L. plants was investigated. Six weeks after sowing, seedlings were grown under soil moisture corresponding to 100, 75, 50 and 25 % field capacity (FC) with or without PEN (15 mg l(-1)) for 4 weeks. Results showed that the seedlings at 75 % FC showed maximum growth and water supply lower than 75 % FC was the threshold of drought-initiated negative effects on seedling growth. Drought stress significantly induced proline and carbohydrate contents and the decreased chlorophyll, photosynthesis parameters, soluble proteins and ion accumulations. Exogenous PEN increased the growth parameters, pigments, photosynthesis and ion accumulations in drought stressed and unstressed plants, but the effects of PEN were more significant under water deficit conditions. PEN also reduced the negative effects of drought by osmotic balance and protein accumulations. Electrophoretic patterns indicated that PEN treatment increased the intensity of some protein bands with the molecular weights of 30 kDa in shoot and 31 kDa in roots, and several new protein bands with the molecular masses between 116 and 14 kDa appeared in leaves, shoots and roots. These results suggest that the PEN application can be a useful tool in alleviation of effects of drought stress in M. pulegium plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...