Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Dev Biol ; 463(1): 88-98, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32361004

ABSTRACT

In adult Hydra, epitheliomuscle cells form the monolayered ecto- and endodermal epithelia. Their basal myonemes function as a longitudinal and circular muscle, respectively. Based on the observation that a Rho/Rock pathway, controlling the cell shape changes during detachment of Hydra buds, is not involved in body movement, at least two actomyosin compartments must exist in these cells: a basal one for body movement and a cortical one for cell shape changes. We therefore analyzed the regional and subcellular localization of the Ser19-phosphorylated myosin regulatory light chain (pMLC20). Along the body column, pMLC20 was detected strongly in the basal myonemes and weakly in the apical cell compartments of ectodermal epitheliomuscle cells. In cells of the bud base undergoing morphogenesis, pMLC20 was localized to intracellular stress fibers as well as to the apical and additionally to the lateral cortical compartment. Pharmacological inhibition revealed that pMLC20 is induced in these compartments by at least two independent pathways. In myonemes, MLC is phosphorylated mainly by myosin light chain kinase (MLCK). In contrast, the cortical apical and lateral MLC phosphorylation in constricting ectodermal cells of the bud base is stimulated via the Rho/ROCK pathway.


Subject(s)
Actomyosin/metabolism , Muscle Contraction/physiology , Myosin Light Chains/metabolism , Actin Cytoskeleton/metabolism , Actomyosin/physiology , Animals , Cell Shape , Epithelial Cells/metabolism , Hydra/metabolism , Myosin-Light-Chain Kinase/metabolism , Myosin-Light-Chain Kinase/physiology , Phosphorylation , Signal Transduction , Stress Fibers/metabolism , rho-Associated Kinases/metabolism
2.
Dev Genes Evol ; 230(3): 227-238, 2020 05.
Article in English | MEDLINE | ID: mdl-32198667

ABSTRACT

Across the Bilateria, FGF/FGFR signaling is critical for normal development, and in both Drosophila and vertebrates, docking proteins are required to connect activated FGFRs with downstream pathways. While vertebrates use Frs2 to dock FGFR to the RAS/MAPK or PI3K pathways, the unrelated protein, downstream of FGFR (Dof/stumps/heartbroken), fulfills the corresponding function in Drosophila. To better understand the evolution of the signaling pathway downstream of FGFR, the available sequence databases were screened to identify Frs2, Dof, and other key pathway components in phyla that diverged early in animal evolution. While Frs2 homologues were detected only in members of the Bilateria, canonical Dof sequences (containing Dof, ankyrin, and SH2/SH3 domains) were present in cnidarians as well as bilaterians (but not in other animals or holozoans), correlating with the appearance of FGFR. Although these data suggested that Dof coupling might be ancestral, gene expression analysis in the cnidarian Hydra revealed that Dof is not upregulated in the zone of strong FGFRa and FGFRb expression at the bud base, where FGFR signaling controls detachment. In contrast, transcripts encoding other, known elements of FGFR signaling in Bilateria, namely the FGFR adaptors Grb2 and Crkl, which are acting downstream of Dof (and Frs2), as well as the guanyl nucleotide exchange factor Sos, and the tyrosine phosphatase Csw/Shp2, were strongly upregulated at the bud base. Our expression analysis, thus, identified transcriptional upregulation of known elements of FGFR signaling at the Hydra bud base indicating a highly conserved toolkit. Lack of transcriptional Dof upregulation raises the interesting question, whether Hydra FGFR signaling requires either of the docking proteins known from Bilateria.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Biological Evolution , Hydra/genetics , Hydra/metabolism , Receptors, Fibroblast Growth Factor/physiology , Animals , Cnidaria/genetics , Cnidaria/metabolism , GRB2 Adaptor Protein/physiology , Gene Expression Regulation, Developmental , Phylogeny , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/physiology , Signal Transduction , Son of Sevenless Proteins/physiology
3.
Gene Expr Patterns ; 32: 18-27, 2019 06.
Article in English | MEDLINE | ID: mdl-30844509

ABSTRACT

Guanine nucleotide exchange factors (GEFs) activate Rho GTPases by accelerating their GDP/GTP exchange. Trio and its paralog Kalirin (Kalrn) are unique members of the Rho-GEFs that harbor three catalytic domains: two functional GEF domains and a serine/threonine kinase domain. The N-terminal GEF domain activates Rac1 and RhoG GTPases, while the C-terminal GEF domain acts specifically on RhoA. Trio and Kalrn have an evolutionary conserved function in morphogenetic processes including neuronal development. De novo mutations in TRIO have lately been identified in patients with intellectual disability, suggesting that this protein family plays an important role in development and disease. Phylogenetic and domain analysis revealed that a Kalrn/Trio ancestor originated in Prebilateria and duplicated in Urbilateria to yield Kalrn and Trio. Only few taxa outside the vertebrates retained both of these highly conserved proteins. To obtain first insights into their redundant or distinct functions in a vertebrate model system, we show for the first time a detailed comparative analysis of trio and kalrn expression in Xenopus laevis development. The mRNAs are maternally transcribed and expression increases starting with neurula stages. Trio and kalrn are detected in mesoderm/somites and different neuronal populations in the neural plate/tube and later also in the brain. However, only trio is expressed in migrating neural crest cells, while kalrn expression is detected in the cranial nerves, suggesting distinct functions. Thus, our expression analysis provides a good basis for further functional studies.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Amino Acid Sequence , Animals , Evolution, Molecular , Gene Expression , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/physiology , Humans , Phylogeny , Protein Serine-Threonine Kinases/physiology , Signal Transduction , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/genetics , rho GTP-Binding Proteins , rhoA GTP-Binding Protein
4.
Dev Dyn ; 246(7): 502-516, 2017 07.
Article in English | MEDLINE | ID: mdl-28411398

ABSTRACT

BACKGROUND: Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto- and endodermal epithelia is unknown. RESULTS: Histological sections and staining of F-actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F-actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. CONCLUSIONS: Our data suggest an essential role of FGFR and a Rho-ROCK-myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502-516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Subject(s)
Constriction , Hydra/physiology , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction/physiology , Actins/metabolism , Animals , Cell Shape , Cytoskeleton/metabolism , Myosin Type II/metabolism , Reproduction , rho-Associated Kinases
5.
Dev Genes Evol ; 224(4-6): 235-44, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25311911

ABSTRACT

Guidance of cells and tissue sheets is an essential function in developing and differentiating animal tissues. In Hydra, where cells and tissue move dynamically due to constant cell proliferation towards the termini or into lateral, vegetative buds, factors essential for guidance are still unknown. Good candidates to take over this function are fibroblast growth factors (FGFs). We present the phylogeny of several Hydra FGFs and analysis of their expression patterns. One of the FGFs is expressed in all terminal regions targeted by tissue movement and at boundaries crossed by moving tissue and cells with an expression pattern slightly differing in two Hydra strains. A model addressing an involvement of this FGF in cell movement and morphogenesis is proposed: Hydra FGFf-expressing cells might serve as sources to attract tissue and cells towards the termini of the body column and across morphological boundaries. Moreover, a function in morphogenesis and/or differentiation of cells and tissue is suggested.


Subject(s)
Evolution, Molecular , Fibroblast Growth Factors/genetics , Hydra/genetics , Hydra/metabolism , Animals , Expressed Sequence Tags , Fibroblast Growth Factors/metabolism , Hydra/growth & development , Morphogenesis , Phylogeny , Up-Regulation
6.
Dev Biol ; 395(1): 154-66, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25149325

ABSTRACT

Formation of a constriction and tissue separation between parent and young polyp is a hallmark of the Hydra budding process and controlled by fibroblast growth factor receptor (FGFR) signaling. Appearance of a cluster of cells positive for double phosphorylated ERK (dpERK) at the late separation site indicated that the RAS/MEK/ERK pathway might be a downstream target of the Hydra Kringelchen FGFR. In fact, inhibition of ERK phosphorylation by the MEK inhibitor U0126 reversibly delayed bud detachment and prevented formation of the dpERK-positive cell cluster indicating de novo-phosphorylation of ERK at the late bud base. In functional studies, a dominant-negative Kringelchen FGFR prevented bud detachment as well as appearance of the dpERK-positive cell cluster. Ectopic expression of full length Kringelchen, on the other hand, induced a localized rearrangement of the actin cytoskeleton at sites of constriction, localized ERK-phosphorylation and autotomy of the body column. Our data suggest a model in which (i) the Hydra FGFR targets, via an unknown pathway, the actin cytoskeleton to induce a constriction and (ii) FGFR activates MEK/ERK signaling at the late separation site to allow tissue separation.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Hydra/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction , Animals , Animals, Genetically Modified , Blotting, Western , Butadienes/pharmacology , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hydra/embryology , Hydra/growth & development , In Situ Hybridization , Microscopy, Confocal , Microscopy, Fluorescence , Morphogenesis/drug effects , Morphogenesis/genetics , Nitriles/pharmacology , Phosphorylation/drug effects , Pyrroles/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Time Factors
7.
Dev Genes Evol ; 223(3): 159-69, 2013 May.
Article in English | MEDLINE | ID: mdl-23111653

ABSTRACT

Fibroblast growth factor receptors (FGFR) are highly conserved receptor tyrosine kinases, and evolved early in metazoan evolution. In order to investigate their functional conservation, we asked whether the Kringelchen FGFR in the freshwater polyp Hydra vulgaris, is able to functionally replace FGFR in fly embryos. In Drosophila, two endogenous FGFR, Breathless (Btl) and Heartless (Htl), ensure formation of the tracheal system and mesodermal cell migration as well as formation of the heart. Using UAS-kringelchen-5xmyc transgenic flies and targeted expression, we show that Kringelchen is integrated correctly into the cell membrane of mesodermal and tracheal cells in Drosophila. Nevertheless, Kringelchen expression driven in tracheal cells failed to rescue the btl (LG19) mutant. The Hydra FGFR was able to substitute for Heartless in the htl (AB42) null mutant; however, this occurred only during early mesodermal cell migration. Our data provide evidence for functional conservation of this early-diverged FGFR across these distantly related phyla, but also selectivity for the Htl FGFR in the Drosophila system.


Subject(s)
Drosophila/genetics , Hydra/genetics , Receptors, Fibroblast Growth Factor/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Evolution, Molecular , Molecular Sequence Data , Mutation , Phylogeny , Receptors, Fibroblast Growth Factor/chemistry , Sequence Homology, Amino Acid
8.
Int J Dev Biol ; 56(6-8): 583-91, 2012.
Article in English | MEDLINE | ID: mdl-22689360

ABSTRACT

In developing embryos, boundary formation between neighbouring groups of cells is essential to establish compartments which later fulfil specialized functions. The ability to form such boundaries has likely developed early in animal evolution - due to functional requirements imposed by the necessity to separate tissues which protect the animal, take up food or ensure propagation. Essential for boundary formation are local cues which may be provided by the intersection of diffusible molecules or set locally by activation of membrane-bound receptors and transcription factors. In the simple diploblastic Hydra, a representative of the basally branching metazoan Cnidaria, tissue boundaries are morphologically detectable between the body column and terminally differentiated head and foot structures. In adult polyps, these borders correspond to sharp lines of differential gene expression. They form de novo during regeneration and budding of a young polyp. Functional studies strongly suggest the involvement of FGFR/Notch signalling in the establishment of the parent-bud boundary, and it is very likely that these pathways interact with the WNT and BMP systems. How boundaries in the head and foot regions are generated is still unclear. Expression patterns of transcription factors like Cngsc, HyAlx, HyBra, HyOtx, Prdl-a, CnNK2 and Manacle show strong position dependency and may be involved in regulating gene expression on either side of the boundaries, by interpreting positional information during their formation and maintenance. Due to its simplicity, the easy accessibility to pharmacological interference and, recently, transgenesis, Hydra is an interesting prebilaterian model system to study the emergence of boundary-forming mechanisms during evolution.


Subject(s)
Cell Communication , Hydra/physiology , Intercellular Junctions/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Notch/metabolism , Animals , Cell Differentiation , Gene Expression Regulation, Developmental , Hydra/embryology , Models, Animal , Models, Biological , Receptors, Eph Family , Regeneration , Signal Transduction , Transcription Factors/metabolism
9.
Mol Biol Evol ; 28(1): 153-61, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20660083

ABSTRACT

Members of the universal stress protein (USP) family were originally identified in stressed bacteria on the basis of a shared domain, which has since been reported in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants. Although not previously characterized in metazoans, here we report that USP genes are distributed in animal genomes in a unique pattern that reflects frequent independent losses and independent expansions. Multiple USP loci are present in urochordates as well as all Cnidaria and Lophotrochozoa examined, but none were detected in any of the available ecdysozoan or non-urochordate deuterostome genome data. The vast majority of the metazoan USPs are short, single-domain proteins and are phylogenetically distinct from the prokaryotic, plant, protist, and fungal members of the protein family. Whereas most of the metazoan USP genes contain introns, with few exceptions those in the cnidarian Hydra are intronless and cluster together in phylogenetic analyses. Expression patterns were determined for several cnidarian USPs, including two genes belonging to the intronless clade, and these imply diverse functions. The apparent paradox of implied diversity of roles despite high overall levels of sequence (and implied structural) similarity parallels the situation in bacteria. The absence of USP genes in ecdysozoans and most deuterostomes may be a consequence of functional redundancy or specialization in taxon-specific roles.


Subject(s)
Genomics/methods , Heat-Shock Proteins/genetics , Phylogeny , Amino Acid Sequence , Animals , Bayes Theorem , Gene Expression , Heat-Shock Proteins/classification , Humans , Hydra/anatomy & histology , Hydra/classification , Hydra/genetics , In Situ Hybridization , Molecular Sequence Data , Sequence Alignment
10.
Dev Dyn ; 239(7): 1967-76, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20549733

ABSTRACT

Molecular data for nephridial development in polychaetes are not available yet. The scope of our work was to establish a reference system for future investigations using two markers for nephridial development: beta-tubulin as marker for cilia and alkaline phosphatase (AP) activity for secretory epithelia. The markers identified, unexpectedly, three consecutively forming generations of nephridia: (1) a transitory unciliated, but AP-positive head kidney, (2) a transitory larval nephridium, which undergoes a morphological transition from a protonephridium to a funnelled nephridium concomitant with the development of the coelomic cavity and finally, (3) the serially arranged metanephridia. The spatial arrangement of larval and definitive nephridia, revealed an up to now unknown developmental boundary between the synchronously forming larval and the serially proliferating definitive segments. Development of three consecutive sets of nephridia with different morphology and biochemical properties was unexpected and reveals an interesting multistep process in the development of excretory structures in Platynereis.


Subject(s)
Larva/growth & development , Polychaeta/embryology , Alkaline Phosphatase/metabolism , Animals , Immunohistochemistry , Larva/metabolism , Larva/ultrastructure , Microscopy, Electron, Transmission , Polychaeta/metabolism , Polychaeta/ultrastructure , Tubulin/metabolism
11.
Electrophoresis ; 31(2): 299-302, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20084629

ABSTRACT

The model organism Hydra has been used for molecular studies for more than 20 years, however, its DNA base composition has not been determined yet. We have analyzed DNA and total RNA of the freshwater polyp Hydra magnipapillata with two independent procedures of high accuracy and sensitivity - fluorescence labeling of nucleotides followed by CE-LIF detection and (32)P-postlabeling. DNA of Hydra was digested either to deoxyribonucleoside-5'-monophosphates or deoxyribonucleoside-3'-monophosphates selectively conjugated with the fluorescent dye 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl ethylene diamine hydrochloride (BODIPY FL EDA) separated and detected using CE-LIF. Both versions of the assay revealed a high A+T composition of 78 and 71%, whereas total DNA methylation (5-methyldeoxycytidine) was 2.6 and 3.1%. Total Hydra RNA showed highest base levels for guanine (33%) and a level of 1.4% for pseudouracil. All values were in good agreement with those determined by the (32)P-postlabeling method.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , DNA/chemistry , Hydra/genetics , Nucleotides/analysis , Phosphorus Radioisotopes/chemistry , RNA/chemistry , Animals , DNA Methylation , Electrophoresis, Capillary , Guanine , Lasers , Spectrometry, Fluorescence/methods
12.
Dev Genes Evol ; 219(9-10): 455-68, 2009 Oct.
Article in English | MEDLINE | ID: mdl-20016912

ABSTRACT

We have analyzed the evolution of fibroblast growth factor receptor (FGFR) tyrosine kinase genes throughout a wide range of animal phyla. No evidence for an FGFR gene was found in Porifera, but we tentatively identified an FGFR gene in the placozoan Trichoplax adhaerens. The gene encodes a protein with three immunoglobulin-like domains, a single-pass transmembrane, and a split tyrosine kinase domain. By superimposing intron positions of 20 FGFR genes from Placozoa, Cnidaria, Protostomia, and Deuterostomia over the respective protein domain structure, we identified ten ancestral introns and three conserved intron groups. Our analysis shows (1) that the position of ancestral introns correlates to the modular structure of FGFRs, (2) that the acidic domain very likely evolved in the last common ancestor of triploblasts, (3) that splicing of IgIII was enabled by a triploblast-specific insertion, and (4) that IgI is subject to substantial loss or duplication particularly in quickly evolving genomes. Moreover, intron positions in the catalytic domain of FGFRs map to the borders of protein subdomains highly conserved in other serine/threonine kinases. Nevertheless, these introns were introduced in metazoan receptor tyrosine kinases exclusively. Our data support the view that protein evolution dating back to the Cambrian explosion took place in such a short time window that only subtle changes in the domain structure are detectable in extant representatives of animal phyla. We propose that the first multidomain FGFR originated in the last common ancestor of Placozoa, Cnidaria, and Bilateria. Additional domains were introduced mainly in the ancestor of triploblasts and in the Ecdysozoa.


Subject(s)
Evolution, Molecular , Hydra/genetics , Placozoa/genetics , Receptors, Fibroblast Growth Factor/genetics , Animals , Cnidaria/genetics , Protein Structure, Tertiary , Receptors, Fibroblast Growth Factor/chemistry
14.
Development ; 131(16): 4001-11, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15269170

ABSTRACT

Signalling through fibroblast growth factors (FGFR) is essential for proper morphogenesis in higher evolved triploblastic organisms. By screening for genes induced during morphogenesis in the diploblastic Hydra, we identified a receptor tyrosine kinase (kringelchen) with high similarity to FGFR tyrosine kinases. The gene is dynamically upregulated during budding, the asexual propagation of Hydra. Activation occurs in body regions, in which the intrinsic positional value changes. During tissue displacement in the early bud, kringelchen RNA is transiently present ubiquitously. A few hours later - coincident with the acquisition of organiser properties by the bud tip - a few cells in the apical tip express the gene strongly. About 20 hours after the onset of evagination, expression is switched on in a ring of cells surrounding the bud base, and shortly thereafter vanishes from the apical expression zone. The basal ring persists in the parent during tissue contraction and foot formation in the young polyp, until several hours after bud detachment. Inhibition of bud detachment by head regeneration results in severe distortion, disruption or even complete loss of the well-defined ring-like expression zone. Inhibition of FGFR signalling by SU5402 or, alternatively, inhibition of translation by phosphorothioate antisense oligonucleotides inhibited detachment of buds, indicating that, despite the dynamic expression pattern, the crucial phase for FGFR signalling in Hydra morphogenesis lies in bud detachment. Although Kringelchen groups with the FGFR family, it is not known whether this protein is able to bind FGFs, which have not been isolated from Hydra so far.


Subject(s)
Hydra/embryology , Protein-Tyrosine Kinases/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Differentiation/genetics , Cell Differentiation/physiology , Evolution, Molecular , Hydra/enzymology , Hydra/growth & development , Hydra/metabolism , Molecular Sequence Data , Phylogeny , Protein-Tyrosine Kinases/genetics , RNA, Messenger/metabolism , Receptors, Fibroblast Growth Factor/genetics , Regeneration/genetics , Regeneration/physiology
15.
Proc Natl Acad Sci U S A ; 101(8): 2363-8, 2004 Feb 24.
Article in English | MEDLINE | ID: mdl-14983015

ABSTRACT

Hydra regenerate throughout their life. We previously described early modulations in cAMP-response element-binding protein (CREB) DNA-binding activity during regeneration. We now show that the Ser-67 residue located in the P-box is a target for post-translational regulation. The antihydra CREB antiserum detected CREB-positive nuclei distributed in endoderm and ectoderm, whereas the phosphoSer133-CREB antibody detected phospho-CREB-positive nuclei exclusively in endodermal cells. During early regeneration, we observed a dramatic increase in the number of phospho-CREB-positive nuclei in head-regenerating tips, exceeding 80% of the endodermal cells. We identified among CREB-binding kinases the p80 kinase, which showed an enhanced activity and a hyperphosphorylated status during head but not foot regeneration. According to biochemical and immunological evidence, this p80 kinase belongs to the Ribosomal protein S6 kinase family. Exposure to the U0126 mitogen-activated protein kinase kinase inhibitor inhibited head but not foot regeneration, abolished CREB phosphorylation and activation of the early gene HyBra1 in head-regenerating tips. These data support a role for the mitogen-activated protein kinase/ribosomal protein S6 kinase/CREB pathway in hydra head organizer activity.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Hydra/physiology , Regeneration/physiology , Amino Acid Sequence , Animals , Cyclic AMP Response Element-Binding Protein/chemistry , Cyclic AMP Response Element-Binding Protein/genetics , Head , Hydra/growth & development , Kinetics , Leucine Zippers/genetics , Molecular Sequence Data , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
16.
Rouxs Arch Dev Biol ; 198(7): 382-388, 1990 May.
Article in English | MEDLINE | ID: mdl-28305532

ABSTRACT

LiCl in concentrations exceeding 0.5 mM affects morphogenesis in Hydra vulgaris (formerly named H. attenuata) by interfering with the foot-forming system(s). Pulse treatment of Hydra bearing small buds or of animals that develop a bud within 14 h after the end of treatment prevented foot formation at the bud's base in a concentration-dependent manner. With increasing concentrations of Li+ or length of treatment in increasing percentage of the buds remained permanently connected to the parent by a bridge of tissue thus forming a stable secondary axis. Instead of the normal ring-shaped foot a patch of basal disc tissue developed or the bud failed to differentiate foot tissue at all. Long-term culture of animals in 1 mM LiCl inhibited budding from the second day of treatment onwards and detachment of existing buds was delayed. After 4 days of treatment 15%-30% of budless or bud-bearing animals developed up to three patch-like basal discs at various positions along the body axis; these usually grew out one above the other on the same side of the animal but never at the same transverse level. Besides these patch feet broad belts of foot tissue were observed in the lower gastric region. After 1 week of treatment half of the animals developed a constriction located usually in the lower two-thirds of the body axis. The tissue adjacent to this constriction and particularly above it differentiated into mucus-secreting foot tissue. Subsequent separation into two morphologically intact polyps occurred occasionally. When treatment was stopped, budding restarted within the next 3 days at several positions along the body axis whether or not secondary feet or a constriction existed. Buds grew out in different budding zones, which persisted for several days. This burst of budding led to up to 7 buds per animal within 3 days. After about 1 week the animals regulated to normality or became epithelial, i.e. they lost their stem cells during and after treatment.

17.
Rouxs Arch Dev Biol ; 197(8): 471-475, 1988 Jan.
Article in English | MEDLINE | ID: mdl-28305472

ABSTRACT

LiCl, a well-known vegetalising agent, interferes with the commitment of stem cells to nerve cells and nematocytes in Hydra attenuata. Treatment with 20 mM LiCl inhibits commitment to nerve cells, treatment with 1 mM LiCl inhibits commitment to nematocytes. However, LiCl does not prevent stem cells committed to the nematocyte pathway from dividing and differentiating into nests of nematocytes. Following LiCl treatment, determination to nerve cells and nematocytes is triggered again. Commitment to nerve cells is strongly stimulated within the first 3 h following pulse treatment with LiCl if the animals have been fed immediately prior to treatment. In Hydra exposed to LiCl for 10 days the stem cell density is reduced by at least 90% of the initial value, and nematocytes are almost completely missing, whereas the density of nerve cells is within the normal range in animals with normal morphology. Animals which developed a transverse constriction in the middle of the body axis contain a 1.7-fold higher nerve cell density in the lower part than is observed in control animals.

SELECTION OF CITATIONS
SEARCH DETAIL
...