Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Virus Res ; 112: 115-173, 2022.
Article in English | MEDLINE | ID: mdl-35840180

ABSTRACT

Rabies infects all mammals; however, transmission cycles are only maintained in certain bat and carnivore species. The high incidence of rabies in Greater Kudu (Tragelaphus strepsiceros) observed in Namibia for over 40 years has led to postulation that independent virus transmission is occurring within this antelope population. We have analysed extensive experimental, epidemiological, phylogeographic and deep sequence data, which collectively refute maintenance of an independent rabies cycle in kudu. As rabies in kudu continues to have a negative impact on the Namibian agricultural sector, measures to protect kudu have been investigated, including the use of a third-generation oral rabies vaccine. Initial results show protection of kudu from rabies infection via the oral route, with an appropriate bait design, different application schedules and vaccination doses further enhancing the immune response. Rabies in kudu is a complex interplay at the wildlife-livestock interface and requires a concerted approach to successfully control.


Subject(s)
Antelopes , Rabies Vaccines , Rabies virus , Rabies , Animals , Animals, Wild , Antelopes/physiology , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Rabies virus/genetics
2.
Front Vet Sci ; 8: 737250, 2021.
Article in English | MEDLINE | ID: mdl-34760958

ABSTRACT

Dog-mediated rabies is endemic throughout Africa. While free-roaming dogs that play a crucial role in rabies transmission are often inaccessible for parenteral vaccination during mass dog vaccination campaigns, oral rabies vaccination (ORV) is considered to be a promising alternative to increase vaccination coverage in these hard-to-reach dogs. The acceptance of ORV as an efficient supplementary tool is still low, not least because of limited immunogenicity and field trial data in local dogs. In this study, the immunogenicity of the highly attenuated 3rd-generation oral rabies vaccine strain SPBN GASGAS in local free-roaming dogs from Namibia was assessed by determining the immune response in terms of seroconversion for up to 56 days post-vaccination. At two study sites, free-roaming dogs were vaccinated by administering the vaccine either by direct oral administration or via a vaccine-loaded egg bait. Pre- and post-vaccination blood samples were tested for rabies virus neutralizing as well as binding antibodies using standard serological assays. A multiple logistic regression (MLR) analysis was performed to determine a possible influence of study area, vaccination method, and vaccine dose on the seroconversion rate obtained. About 78% of the dogs vaccinated by the oral route seroconverted (enzyme-linked immunosorbent assay, ELISA), though the seroconversion as determined by a rapid fluorescence focus inhibition test (RFFIT) was much lower. None of the factors examined had a significant effect on the seroconversion rate. This study confirms the immunogenicity of the vaccine strain SPBN GASGAS and the potential utility of ORV for the control of dog-mediated rabies in African dogs.

3.
PLoS Negl Trop Dis ; 13(4): e0007355, 2019 04.
Article in English | MEDLINE | ID: mdl-30990805

ABSTRACT

Rabies is a fatal zoonotic disease that causes a heavy burden on societies. Namibia, a country in southern Africa, is aiming at controlling the disease in its main reservoir, the domestic dog. To facilitate the implementation comprehensive information on the ecology and epidemiology of the disease and surveillance is of utmost importance. The study presented assesses the baseline data for both human and animal rabies surveillance in Namibia in recent times and establishes correlations with ecological and socio-economic data in order to provide an up-to-date picture on the epidemiology of rabies in Namibia. For instance, it was important to identify the main drivers in the epidemiology, and whether the control strategy by mass vaccination of dogs is undermined by cycles of rabies in wildlife. Rabies in humans was reported mainly from the Northern Communal Areas (NCAs), with a total of 113 cases from 2011 to 2017, representing an incidence of between 1.0 and 2.4 annual human rabies deaths per 100,000 inhabitants. Kavango, the region with the highest human rabies incidence was also the region with the lowest animal rabies surveillance intensity. Generally, the vast majority (77%) of dog samples originated from communal farm land, followed by urban areas (17%), while only a small fraction (3%) was submitted from freehold farm areas. In contrast, kudu and eland submissions were almost exclusively from freehold farmland (76%) and urban areas (19%), whereas the submission of cattle samples was evenly distributed among freehold farms (46%) and communal farm land (46%). The likelihood of sample submission decreased exponentially with distance to one of the two laboratories. Overall, 67% (N = 1,907) of all samples submitted tested rabies-positive, with the highest positivity rate observed in kudus (89%) and jackals (87%). The transmission cycle of rabies in dogs appears restricted to the northern communal areas of Namibia, whilst rabies in wildlife species is predominately reported from farmland in central Namibia, mostly affecting kudu (Tragelaphus strepsiceros) and livestock with a likely reservoir in wildlife canids such as jackals or bat-eared foxes. The analysis confirms the presence of two independent transmission cycles in Namibia with little geographic overlap, thus allowing for a sustainable control of rabies in dogs in the NCAs.


Subject(s)
Ecosystem , Rabies/epidemiology , Rabies/veterinary , Zoonoses/epidemiology , Adolescent , Animals , Animals, Domestic , Animals, Wild , Cattle , Child , Child, Preschool , Disease Transmission, Infectious , Female , Humans , Incidence , Infant , Male , Namibia/epidemiology , Rabies/transmission , Rural Population , Socioeconomic Factors , Urban Population , Zoonoses/transmission
4.
Sci Rep ; 8(1): 16599, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413745

ABSTRACT

Rabies in the Greater Kudu (Tragelaphus strepsiceros) in Namibia is unique and found in such magnitude as has not been reported elsewhere in southern Africa. Reasons as to why Kudus appear to be exceptionally susceptible to rabies still remain speculative at best. Because the current severe rabies endemic in Kudus continues to have an enormous negative impact on the Namibian agricultural sector, we set out to question existing dogmas regarding the epidemiology of the disease in a unique experimental setting. In addition, we explored effective measures to protect these antelopes. Although we were able to confirm high susceptibly of kudus for rabies and sporadic horizontal rabies virus transmission to contact animals, we contend that these observations cannot plausibly explain the rapid spread of the disease in Kudus over large territories. Since parenteral vaccination of free-roaming Kudus is virtually impossible, oral rabies vaccination using modified life virus vaccines with a high safety profile would be the ultimate solution to the problem. In a proof-of-concept study using a 3rd generation oral rabies virus vaccine construct (SPBN GASGAS) we found evidence that Kudus can be vaccinated by the oral route and protected against a subsequent rabies infection. In a second phase, more targeted studies need to be initiated by focusing on optimizing oral vaccine uptake and delivery.


Subject(s)
Antelopes/virology , High-Throughput Screening Assays/methods , Rabies Vaccines/therapeutic use , Rabies virus/immunology , Rabies/veterinary , Animals , Female , Immunization , Male , Rabies/prevention & control , Rabies/transmission , Rabies/virology
5.
Eur J Wildl Res ; 64(6): 62, 2018.
Article in English | MEDLINE | ID: mdl-32214946

ABSTRACT

Rabies in the greater kudu (Tragelaphus strepsiceros), one of the largest African antelopes, is a phenomenon unique to Namibia. Since the mid-1970s, the country has been plagued by two epizootics that claimed thousands of casualties among the indigenous kudu population. Reasons as to why kudus appear to be exceptionally susceptible to the disease still remain speculative at best. Because the Namibian economy relies heavily on trophy hunting, game meat hunting, and ecotourism, the current severe spread of rabies among kudus calls for effective measures to protect these antelopes. Oral vaccination of kudus may offer a possibility provided efficacious oral rabies vaccines are available. In this screening study, we explored options for attractive baits that facilitate optimal vaccine uptake by the target species and a bait distribution system that maximizes bait availability to the target species meanwhile minimizing bait depletion by non-target species. The results show that gelatin-based baits mixed with local (pods of the camel thorn tree) but also imported (apple-flavored corn meal) attractants are highly attractive for kudus providing a basis for future oral rabies vaccine baits.

SELECTION OF CITATIONS
SEARCH DETAIL
...