Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 93(2): 633-651, 2023.
Article in English | MEDLINE | ID: mdl-37066909

ABSTRACT

BACKGROUND: Prior work has shown that certain modifiable health, Alzheimer's disease (AD) biomarker, and demographic variables are associated with cognitive performance. However, less is known about the relative importance of these different domains of variables in predicting longitudinal change in cognition. OBJECTIVE: Identify novel relationships between modifiable physical and health variables, AD biomarkers, and slope of cognitive change over two years in a cohort of older adults with mild cognitive impairment (MCI). METHODS: Metrics of cardiometabolic risk, stress, inflammation, neurotrophic/growth factors, and AD pathology were assessed in 123 older adults with MCI at baseline from the Alzheimer's Disease Neuroimaging Initiative (mean age = 73.9; SD = 7.6; mean education = 16.0; SD = 3.0). Partial least squares regression (PLSR)-a multivariate method which creates components that best predict an outcome-was used to identify whether these physiological variables were important in predicting slope of change in episodic memory or executive function over two years. RESULTS: At two-year follow-up, the two PLSR models predicted, respectively, 20.0% and 19.6% of the variance in change in episodic memory and executive function. Baseline levels of AD biomarkers were important in predicting change in both episodic memory and executive function. Baseline education and neurotrophic/growth factors were important in predicting change in episodic memory, whereas cardiometabolic variables such as blood pressure and cholesterol were important in predicting change in executive function. CONCLUSION: These data-driven analyses highlight the impact of AD biomarkers on cognitive change and further clarify potential domain specific relationships with predictors of cognitive change.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/pathology , Least-Squares Analysis , Cognition , Biomarkers , Cardiovascular Diseases/complications , Neuropsychological Tests
2.
J Int Neuropsychol Soc ; 28(8): 781-789, 2022 09.
Article in English | MEDLINE | ID: mdl-34664547

ABSTRACT

OBJECTIVES: To identify novel associations between modifiable physical and health variables, Alzheimer's disease (AD) biomarkers, and cognitive function in a cohort of older adults with Mild Cognitive Impairment (MCI). METHODS: Metrics of cardiometabolic risk, stress, inflammation, neurotrophic/growth factors, AD, and cognition were assessed in 154 MCI participants (Mean age = 74.1 years) from the Alzheimer's Disease Neuroimaging Initiative. Partial Least Squares analysis was employed to examine associations among these physiological variables and cognition. RESULTS: Latent variable 1 revealed a unique combination of AD biomarkers, neurotrophic/growth factors, education, and stress that were significantly associated with specific domains of cognitive function, including episodic memory, executive function, processing speed, and language, representing 45.2% of the cross-block covariance in the data. Age, body mass index, and metrics tapping basic attention or premorbid IQ were not significant. CONCLUSIONS: Our data-driven analysis highlights the significant relationships between metrics associated with AD pathology, neuroprotection, and neuroplasticity, primarily with tasks tapping episodic memory, executive function, processing speed, and verbal fluency rather than more basic tasks that do not require mental manipulation (basic attention and vocabulary). These data also indicate that biological metrics are more strongly associated with episodic memory, executive function, and processing speed than chronological age in older adults with MCI.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Biomarkers , Cognition/physiology , Executive Function/physiology , Humans , Least-Squares Analysis , Neuropsychological Tests
3.
Brain Commun ; 3(3): fcab140, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34286271

ABSTRACT

The ability to carry out instrumental activities of daily living, such as paying bills, remembering appointments and shopping alone decreases with age, yet there are remarkable individual differences in the rate of decline among older adults. Understanding variables associated with a decline in instrumental activities of daily living is critical to providing appropriate intervention to prolong independence. Prior research suggests that cognitive measures, neuroimaging and fluid-based biomarkers predict functional decline. However, a priori selection of variables can lead to the over-valuation of certain variables and exclusion of others that may be predictive. In this study, we used machine learning techniques to select a wide range of baseline variables that best predicted functional decline in two years in individuals from the Alzheimer's Disease Neuroimaging Initiative dataset. The sample included 398 individuals characterized as cognitively normal or mild cognitive impairment. Support vector machine classification algorithms were used to identify the most predictive modality from five different data modality types (demographics, structural MRI, fluorodeoxyglucose-PET, neurocognitive and genetic/fluid-based biomarkers). In addition, variable selection identified individual variables across all modalities that best predicted functional decline in a testing sample. Of the five modalities examined, neurocognitive measures demonstrated the best accuracy in predicting functional decline (accuracy = 74.2%; area under the curve = 0.77), followed by fluorodeoxyglucose-PET (accuracy = 70.8%; area under the curve = 0.66). The individual variables with the greatest discriminatory ability for predicting functional decline included partner report of language in the Everyday Cognition questionnaire, the ADAS13, and activity of the left angular gyrus using fluorodeoxyglucose-PET. These three variables collectively explained 32% of the total variance in functional decline. Taken together, the machine learning model identified novel biomarkers that may be involved in the processing, retrieval, and conceptual integration of semantic information and which predict functional decline two years after assessment. These findings may be used to explore the clinical utility of the Everyday Cognition as a non-invasive, cost and time effective tool to predict future functional decline.

4.
J Gerontol A Biol Sci Med Sci ; 76(8): 1415-1422, 2021 07 13.
Article in English | MEDLINE | ID: mdl-33880516

ABSTRACT

Body mass index (BMI) is a risk factor for Alzheimer's disease (AD) although the relationship is complex. Obesity in midlife is associated with increased risk for AD, whereas evidence supports both higher and lower BMI increasing risk for AD in late life. This study examined the influence of individual differences in genetic risk for AD to further clarify the relationship between late-life BMI and conversion to AD. Participants included 52 individuals diagnosed as having mild cognitive impairment (MCI) at baseline who converted to AD within 24 months and 52 matched MCI participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. BMI was measured at baseline. Genetic risk for AD was assessed via genome-wide polygenic risk scores. Conditional logistic regression models were run to determine if BMI and polygenic risk predicted conversion to AD. Results showed an interaction between BMI and genetic risk, such that individuals with lower BMI and higher polygenic risk were more likely to convert to AD relative to individuals with higher BMI. These results remained significant after adjusting for cerebrospinal fluid biomarkers of AD. Exploratory sex-stratified analyses revealed this relationship only remained significant in males. These results show that higher genetic risk in the context of lower BMI predicts conversion to AD in the next 24 months, particularly among males. These findings suggest that genetic risk for AD in the context of lower BMI may serve as a prodromal risk factor for future conversion to AD.


Subject(s)
Alzheimer Disease , Body Mass Index , Cognitive Dysfunction , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Disease Progression , Female , Genome-Wide Association Study/methods , Humans , Male , Neuroimaging/methods , Neuroimaging/statistics & numerical data , Prognosis , Risk Assessment/methods , Risk Factors , Sex Factors , United States/epidemiology
5.
J Med Syst ; 42(12): 255, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30406430

ABSTRACT

Virtual rehabilitation yields outcomes that are at least as good as traditional care for improving upper limb function and the capacity to carry out activities of daily living. Due to the advent of low-cost gaming systems and patient preference for game-based therapies, video game technology will likely be increasingly utilized in physical therapy practice in the coming years. Gaming systems that incorporate low-cost motion capture technology often generate large datasets of therapeutic movements performed over the course of rehabilitation. An infrastructure has yet to be established, however, to enable efficient processing of large quantities of movement data that are collected outside of a controlled laboratory setting. In this paper, a methodology is presented for extracting and evaluating therapeutic movements from game-based rehabilitation that occurs in uncontrolled and unmonitored settings. By overcoming these challenges, meaningful kinematic analysis of rehabilitation trajectory within an individual becomes feasible. Moreover, this methodological approach provides a vehicle for analyzing large datasets generated in uncontrolled clinical settings to enable better predictions of rehabilitation potential and dose-response relationships for personalized medicine.


Subject(s)
Movement , Stroke Rehabilitation/methods , Video Games , Adult , Aged , Aged, 80 and over , Algorithms , Biomechanical Phenomena , Female , Humans , Joints/physiology , Male , Middle Aged , Range of Motion, Articular , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...