Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci ; 371: 109180, 2024 May.
Article in English | MEDLINE | ID: mdl-38518862

ABSTRACT

The development or remission of diet-induced overweight type 2 diabetes involves many biological changes which occur over very different timescales. Remission, defined by HbA1c<6.5%, or fasting plasma glucose concentration G<126 mg/dl, may be achieved rapidly by following weight loss guidelines. However, remission is often short-term, followed by relapse. Mathematical modelling provides a way of investigating a typical situation, in which patients are advised to lose weight and then maintain fat mass, a slow variable. Remission followed by relapse, in a modelling sense, is equivalent to changing from a remission trajectory with steady state G<126 mg/dl, to a relapse trajectory with steady state G≥126 mg/dl. Modelling predicts that a trajectory which maintains weight will be a relapse trajectory, if the fat mass chosen is too high, the threshold being dependent on the lipid to carbohydrate ratio of the diet. Modelling takes into account the effects of hepatic and pancreatic lipid on hepatic insulin sensitivity and ß-cell function, respectively. This study leads to the suggestion that type 2 diabetes remission guidelines be given in terms of model parameters, not variables; that is, the patient should adhere to a given nutrition and exercise plan, rather than achieve a certain subset of variable values. The model predicts that calorie restriction, not weight loss, initiates remission from type 2 diabetes; and that advice of the form 'adhere to the diet and exercise plan' rather than 'achieve a certain weight loss' may help counter relapse.


Subject(s)
Diabetes Mellitus, Type 2 , Overweight , Humans , Diabetes Mellitus, Type 2/therapy , Overweight/therapy , Overweight/diet therapy , Models, Biological , Weight Loss/physiology , Remission Induction , Recurrence , Caloric Restriction
2.
J Theor Biol ; 486: 110037, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31626814

ABSTRACT

An original model of diabetes linked to carbohydrate and lipid intake is presented and applied to predict the effects on biomarkers of various diets. The variables (biomarkers) are concentrations of fasting plasma glucose, insulin, leptin, glucagon, non-esterified fatty acids (NEFA) and very low density lipoprotein triglyceride (VLDLTG), as well as muscle lipids, hepatic lipids, pancreatic lipids, fat mass and mass of ß-cells. The model predicts isocaloric high carbohydrate low fat (HCLF) diet and low carbohydrate high fat (LCHF) diet trajectories to health which vary in fat mass by at most a few kilograms at steady state. The LCHF trajectories to health are faster than isocaloric HCLF trajectories with respect to fat mass loss, although these trajectories may be slower initially if parameters are adjusting from HCLF values. On LC diets, leptin sensitivity and VLDLTG clearance are thought to increase. Increasing leptin sensitivity and VLDLTG clearance is predicted to lower lipids including fat mass and VLDLTG. The model predicts that changes in VLDLTG due to a change in diet happen rapidly, approaching steady state values after a few weeks, reflecting leptin sensitivity and VLDLTG clearance which are much harder to measure. The model predicts that if only insulin sensitivity increases on a LC diet, steady state fat mass would increase slightly. If leptin and insulin sensitivities increase concurrently, the combined effect could be a decrease in fat mass, consistent with the fact that increasing insulin sensitivity is often associated with fat mass loss in trials. The model predicts trajectories to fat type II diabetes with hypertriglyceridemia due to high carbohydrate moderate fat diets, on which insulin rises before falling, as ectopic fat deposits increase; made fatter and more diabetic by higher lipid consumption. It predicts trajectories to non-diabetic states with raised fat mass, VLDLTG and muscle, hepatic and pancreatic lipids due to moderate carbohydrate high fat diets. The model predicts paths to lean type II diabetes, on a diet of moderate energy but low ß-cell replication rate or high death rate.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Blood Glucose , Diet , Humans , Insulin , Leptin , Lipid Metabolism , Lipoproteins, VLDL , Models, Theoretical , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL
...