Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 3: 116, 2012.
Article in English | MEDLINE | ID: mdl-22654760

ABSTRACT

This study investigates human performance in a cyclic Fitts task at three different scales of observation, either in the presence (difficult condition) or in the absence (easy condition) of a speed-accuracy trade-off. At the fastest scale, the harmonicity of the back and forth movements, which reflects the dissipation of mechanical energy, was measured within the timeframe of single trials. At an intermediate scale, speed and accuracy measures were determined over a trial. The slowest scale pertains to the temporal structure of movement variability, which evolves over multiple trials. In the difficult condition, reliable correlations across each of the measures corroborated a coupling of nested scales of performance. Participants who predominantly emphasized the speed-side of the trade-off (despite the instruction to be both fast and accurate) produced more harmonic movements and clearer 1/f scaling in the produced movement time series, but were less accurate and produced more random variability in the produced movement amplitudes (vice versa for more accurate participants). This implied that speed-accuracy trade-off was accompanied by a trade-off between temporal and spatial streams of 1/f scaling, as confirmed by entropy measures. In the easy condition, however, no trade-offs nor couplings among scales of performance were observed. Together, these results suggest that 1/f scaling is more than just a byproduct of cognition. These findings rather support the claim that interaction-dominant dynamics constitute a coordinative basis for goal-directed behavior.

2.
Ann Dyslexia ; 62(2): 100-19, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22460607

ABSTRACT

The background noise of response times is often overlooked in scientific inquiries of cognitive performances. However, it is becoming widely acknowledged in psychology, medicine, physiology, physics, and beyond that temporal patterns of variability constitute a rich source of information. Here, we introduce two complexity measures (1/f scaling and recurrence quantification analysis) that employ background noise as metrics of reading fluency. These measures gauge the extent of interdependence across, rather than within, cognitive components. In this study, we investigated dyslexic and non-dyslexic word-naming performance in beginning readers and observed that these complexity metrics differentiate reliably between dyslexic and average response times and correlate strongly with the severity of the reading impairment. The direction of change in the introduced metrics suggests that developmental dyslexia resides from dynamical instabilities in the coordination among the many components necessary to read, which could explain why dyslexic readers score below average on so many distinct tasks and modalities.


Subject(s)
Dyslexia/physiopathology , Reading , Child , Humans , Language Tests , Phonetics , Reaction Time/physiology
3.
Front Physiol ; 3: 495, 2012.
Article in English | MEDLINE | ID: mdl-23346058

ABSTRACT

Spectral analysis is a widely used method to estimate 1/f(α) noise in behavioral and physiological data series. The aim of this paper is to achieve a more solid appreciation for the effects of periodic sampling on the outcomes of spectral analysis. It is shown that spectral analysis is biased by the choice of sample rate because denser sampling comes with lower amplitude fluctuations at the highest frequencies. Here we introduce an analytical strategy that compensates for this effect by focusing on a fixed amount, rather than a fixed percentage of the lowest frequencies in a power spectrum. Using this strategy, estimates of the degree of 1/f(α) noise become robust against sample rate conversion and more sensitive overall. Altogether, the present contribution may shed new light on known discrepancies in the psychological literature on 1/f(α) noise, and may provide a means to achieve a more solid framework for 1/f(α) noise in continuous processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...