Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JBJS Rev ; 12(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38968369

ABSTRACT

¼ The purpose of this article was to review the multidisciplinary, team-based approach necessary for the optimal management of patients with limb loss undergoing osseointegration surgery.¼ In this study, we describe the interdisciplinary process of screening, counseling, and surgical and rehabilitation considerations with an emphasis on principles rather than specific implants or techniques.¼ Integrated perioperative management and long-term surveillance are crucial to ensure the best possible outcomes.¼ We hope this model will service as an implant-agnostic guide to others seeking to development an osseointegration center of excellence.


Subject(s)
Amputation, Surgical , Osseointegration , Humans , Amputation, Surgical/rehabilitation , Patient Care Team , Artificial Limbs
2.
Mil Med ; 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35234252

ABSTRACT

The only commercially available ankle-foot prosthesis with powered propulsion lacks ruggedization and other capabilities for service members seeking to return to duty and/or other physically demanding activities. Here, we evaluated a ruggedized powered ankle-foot prosthesis with electromyographic control ("Warrior Ankle"; WA) in an experienced male user of the predicate (Empower) prosthesis. The participant (age = 56 years, mass = 86.8 kg, stature = 173 cm) completed a 650 m simulated hike with varying terrain at a fixed, self-selected speed in the WA and predicate prosthesis, with and without a 22.8 kg weighted vest ("loaded" and "unloaded," respectively). Peak dorsiflexion and plantarflexion angles were extracted from each gait cycle throughout the simulated hike (∼500 prosthetic-side steps). The participant walked faster with the WA (1.15 m/s) compared to predicate (0.80 m/s) prosthesis. On the prosthetic side, peak dorsiflexion angles were larger for the WA (loaded: 27.9°; unloaded: 26.9°) compared to the predicate (loaded: 19.4°; unloaded: 21.3°); peak plantarflexion angles were similar between prostheses and loading conditions [WA (loaded: 15.5°; unloaded: 14.9°), predicate (loaded: 16.9°; unloaded: 14.8°). The WA better accommodated the varying terrain profile, evidenced by greater peak dorsiflexion angles, as well as dorsiflexion and plantarflexion angles that more closely matched or exceeded those of the innate ankle [dorsiflexion (WA: 31.6°, predicate: 27.5°); plantarflexion (WA: 20.7°, predicate: 20.5°)]. Furthermore, the WA facilitated a faster walking speed, suggesting a greater functional capacity with the WA prosthesis. Although further design enhancements are needed, this case study demonstrated feasibility of a proof-of-concept, ruggedized powered ankle-foot prosthesis with electromyographic control.

SELECTION OF CITATIONS
SEARCH DETAIL
...