Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 627(8003): 407-415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383779

ABSTRACT

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.


Subject(s)
Aquaporin 4 , Autoantibodies , Autoantigens , B-Lymphocytes , Immune Tolerance , Neuromyelitis Optica , Animals , Humans , Mice , AIRE Protein , Aquaporin 4/deficiency , Aquaporin 4/genetics , Aquaporin 4/immunology , Aquaporin 4/metabolism , Autoantibodies/immunology , Autoantigens/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD40 Antigens/immunology , Germinal Center/cytology , Germinal Center/immunology , Neuromyelitis Optica/immunology , Neuromyelitis Optica/metabolism , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Thyroid Epithelial Cells/immunology , Thyroid Epithelial Cells/metabolism , Transcriptome
2.
Proc Natl Acad Sci U S A ; 116(37): 18537-18543, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31451631

ABSTRACT

Deletion or Treg cell differentiation are alternative fates of autoreactive MHCII-restricted thymocytes. How these different modes of tolerance determine the size and composition of polyclonal cohorts of autoreactive T cells with shared specificity is poorly understood. We addressed how tolerance to a naturally expressed autoantigen of the central nervous system shapes the CD4 T cell repertoire. Specific cells in the tolerant peripheral repertoire either were Foxp3+ or displayed anergy hallmarks and, surprisingly, were at least as frequent as in the nontolerant repertoire. Despite this apparent lack of deletional tolerance, repertoire inventories uncovered that some T cell receptors (TCRs) were lost from the CD4 T cell pool, whereas others mediated Treg cell differentiation. The antigen responsiveness of these TCRs supported an affinity model of central tolerance. Importantly, the contribution of different diverter TCRs to the nascent thymic Treg cell population reflected their antigen reactivity rather than their frequency among precursors. This reveals a multilayered TCR hierarchy in CD4 T cell tolerance that separates deleted and diverted TCRs and assures that the Treg cell compartment is filled with cells of maximal permissive antigen reactivity.


Subject(s)
Autoantigens/immunology , Cell Differentiation/immunology , Clonal Deletion/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoantigens/genetics , Autoantigens/metabolism , Cell Lineage/genetics , Cell Lineage/immunology , Central Nervous System/immunology , Central Nervous System/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Gene Rearrangement, T-Lymphocyte/immunology , Histocompatibility Antigens Class II/immunology , Lymphocyte Activation , Mice , Mice, Knockout , Mice, Transgenic , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/immunology , Myelin Proteolipid Protein/metabolism , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes, Regulatory/metabolism , Thymocytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...