Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Transl Med ; 21(1): 122, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36788520

ABSTRACT

BACKGROUND: Malfunction of astrocytes is implicated as one of the pathological factors of ALS. Thus, intrathecal injection of healthy astrocytes in ALS can potentially compensate for the diseased astrocytes. AstroRx® is an allogeneic cell-based product, composed of healthy and functional human astrocytes derived from embryonic stem cells. AstroRx® was shown to clear excessive glutamate, reduce oxidative stress, secrete various neuroprotective factors, and act as an immunomodulator. Intrathecal injection of AstroRx® to animal models of ALS slowed disease progression and extended survival. Here we report the result of a first-in-human clinical study evaluating intrathecal injection of AstroRx® in ALS patients. METHODS: We conducted a phase I/IIa, open-label, dose-escalating clinical trial to evaluate the safety, tolerability, and therapeutic effects of intrathecal injection of AstroRx® in patients with ALS. Five patients were injected intrathecally with a single dose of 100 × 106 AstroRx® cells and 5 patients with 250 × 106 cells (low and high dose, respectively). Safety and efficacy assessments were recorded for 3 months pre-treatment (run-in period) and 12 months post-treatment (follow-up period). RESULTS: A single administration of AstroRx® at either low or high doses was safe and well tolerated. No adverse events (AEs) related to AstroRx® itself were reported. Transient AEs related to the Intrathecal (IT) procedure were all mild to moderate. The study demonstrated a clinically meaningful effect that was maintained over the first 3 months after treatment, as measured by the pre-post slope change in ALSFRS-R. In the 100 × 106 AstroRx® arm, the ALSFRS-R rate of deterioration was attenuated from - 0.88/month pre-treatment to - 0.30/month in the first 3 months post-treatment (p = 0.039). In the 250 × 106 AstroRx® arm, the ALSFRS-R slope decreased from - 1.43/month to - 0.78/month (p = 0.0023). The effect was even more profound in a rapid progressor subgroup of 5 patients. No statistically significant change was measured in muscle strength using hand-held dynamometry and slow vital capacity continued to deteriorate during the study. CONCLUSIONS: Overall, these findings suggest that a single IT administration of AstroRx® to ALS patients at a dose of 100 × 106 or 250 × 106 cells is safe. A signal of beneficial clinical effect was observed for the first 3 months following cell injection. These results support further investigation of repeated intrathecal administrations of AstroRx®, e.g., every 3 months. TRIAL REGISTRATION: NCT03482050.


Subject(s)
Amyotrophic Lateral Sclerosis , Mesenchymal Stem Cell Transplantation , Humans , Amyotrophic Lateral Sclerosis/therapy , Astrocytes , Injections, Spinal , Mesenchymal Stem Cell Transplantation/methods
2.
Front Endocrinol (Lausanne) ; 12: 635405, 2021.
Article in English | MEDLINE | ID: mdl-34025576

ABSTRACT

Background: Cell therapy of diabetes aims at restoring the physiological control of blood glucose by transplantation of functional pancreatic islet cells. A potentially unlimited source of cells for such transplantations would be islet cells derived from an in vitro differentiation of human pluripotent stem cells (hESC/hiPSC). The islet-like clusters (ILC) produced by the known differentiation protocols contain various cell populations. Among these, the ß-cells that express both insulin and the transcription factor Nkx6.1 seem to be the most efficient to restore normoglycemia in diabetes animal models. Our aim was to find markers allowing selection of these efficient cells. Methods: Functional Cell-Capture Screening (FCCS) was used to identify markers that preferentially capture the cells expressing both insulin and Nkx6.1, from hESC-derived ILC cells. In order to test whether selection for such markers could improve cell therapy in diabetic mouse models, we used ILC produced from a clinical-grade line of hESC by a refined differentiation protocol adapted to up-scalable bioreactors. Re-aggregated MACS sorted cells were encapsulated in microspheres made of alginate modified to reduce foreign body reaction. Implantation was done intraperitoneally in STZ-treated C57BL/6 immuno-competent mice. Results: CD49A (integrin alpha1) was identified by FCCS as a marker for cells that express insulin (or C-peptide) as well as Nkx6.1 in ILC derived by hESC differentiation. The ILC fraction enriched in CD49A + cells rapidly reduced glycemia when implanted in diabetic mice, whereas mice receiving the CD49A depleted population remained highly diabetic. CD49A-enriched ILC cells also produced higher levels of human C-peptide in the blood of transplanted mice. However, the difference between CD49A-enriched and total ILC cells remained small. Another marker, CD26 (DPP4), was identified by FCCS as binding insulin-expressing cells which are Nkx6.1 negative. Depletion of CD26 + cells followed by enrichment for CD49A + cells increased insulin+/Nkx6.1+ cells fraction to ~70%. The CD26 - /CD49A + enriched ILC exhibited improved function over non-sorted ILC or CD49A + cells in diabetic mice and maintain prolonged blood C-peptide levels. Conclusions: Refining the composition of ILC differentiated from hPSC by negative selection to remove cells expressing CD26 and positive selection for CD49A expressing cells could enable more effective cell therapy of diabetes.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Dipeptidyl Peptidase 4/biosynthesis , Integrin alpha1/biosynthesis , Islets of Langerhans Transplantation , Islets of Langerhans/metabolism , Pluripotent Stem Cells/metabolism , Animals , C-Peptide/biosynthesis , Cell Differentiation , Cell Separation , Homeodomain Proteins/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Mice , Mice, Inbred C57BL , Microspheres
3.
Stem Cell Res Ther ; 9(1): 152, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29871694

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a motor neuron (MN) disease characterized by the loss of MNs in the central nervous system. As MNs die, patients progressively lose their ability to control voluntary movements, become paralyzed and eventually die from respiratory/deglutition failure. Despite the selective MN death in ALS, there is growing evidence that malfunctional astrocytes play a crucial role in disease progression. Thus, transplantation of healthy astrocytes may compensate for the diseased astrocytes. METHODS: We developed a good manufacturing practice-grade protocol for generation of astrocytes from human embryonic stem cells (hESCs). The first stage of our protocol is derivation of astrocyte progenitor cells (APCs) from hESCs. These APCs can be expanded in large quantities and stored frozen as cell banks. Further differentiation of the APCs yields an enriched population of astrocytes with more than 90% GFAP expression (hES-AS). hES-AS were injected intrathecally into hSOD1G93A transgenic mice and rats to evaluate their therapeutic potential. The safety and biodistribution of hES-AS were evaluated in a 9-month study conducted in immunodeficient NSG mice under good laboratory practice conditions. RESULTS: In vitro, hES-AS possess the activities of functional healthy astrocytes, including glutamate uptake, promotion of axon outgrowth and protection of MNs from oxidative stress. A secretome analysis shows that these hES-AS also secrete several inhibitors of metalloproteases as well as a variety of neuroprotective factors (e.g. TIMP-1, TIMP-2, OPN, MIF and Midkine). Intrathecal injections of the hES-AS into transgenic hSOD1G93A mice and rats significantly delayed disease onset and improved motor performance compared to sham-injected animals. A safety study in immunodeficient mice showed that intrathecal transplantation of hES-AS is safe. Transplanted hES-AS attached to the meninges along the neuroaxis and survived for the entire duration of the study without formation of tumors or teratomas. Cell-injected mice gained similar body weight to the sham-injected group and did not exhibit clinical signs that could be related to the treatment. No differences from the vehicle control were observed in hematological parameters or blood chemistry. CONCLUSION: Our findings demonstrate the safety and potential therapeutic benefits of intrathecal injection of hES-AS for the treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Astrocytes/metabolism , Human Embryonic Stem Cells/metabolism , Injections, Spinal/methods , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Humans , Mice , Rats , Superoxide Dismutase-1/metabolism
4.
Neurotoxicology ; 59: 27-32, 2017 03.
Article in English | MEDLINE | ID: mdl-28069364

ABSTRACT

Stem cells are emerging as a promising new treatment modality for a variety of central nervous system disorders. However, their use is hampered by the potential for the development of teratomas and other tumors. Therefore, there is a crucial need for the development of methods for detecting teratomas in preclinical safety studies. The aim of the current study is to assess the ability of a compact Magnetic Resonance Imaging (MRI) system to detect teratoma formation in mice. Five NOD-SCID mice were injected intrathecally with human embryonic stem cells (hESCs), with two mice serving as controls. In vivo MRI was performed on days 25 and 48, and ex vivo MRI was performed after scheduled euthanization (day 55). MRI results were compared to histopathology findings. Two animals injected with hESCs developed hind-limb paresis and paralysis, necessitating premature euthanization. MRI examination revealed abnormal pale areas in the spinal cord and brain, which correlated histopathologically with teratomas. This preliminary study shows the efficacy of compact MRI systems in the detection of small teratomas following intrathecal injection of hESCs in a highly sensitive manner. Although these results should be validated in larger studies, they provide further evidence that the use of MRI in longitudinal studies offers a new monitoring strategy for preclinical testing of stem cell applications.


Subject(s)
Central Nervous System Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/etiology , Embryonic Stem Cells , Magnetic Resonance Imaging , Teratoma/diagnostic imaging , Teratoma/etiology , Animals , Embryonic Stem Cells/pathology , Embryonic Stem Cells/transplantation , Humans , Image Processing, Computer-Assisted , Mice , Mice, Inbred NOD , Mice, SCID , Necrosis/pathology , Prostheses and Implants/adverse effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...