Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 21(31): 6368-6378, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37491970

ABSTRACT

This study presents a new environmentally sustainable catalytic method for the synthesis of symmetrically substituted pyridine derivatives and substituted alkene derivatives using zinc phosphate (Zn3(PO4)2·4H2O) as a non-toxic and green heterogeneous catalyst. The catalytic support was prepared by a co-precipitation method, and it was applied for the first time as a heterogeneous catalyst in organic synthesis. Trisubstituted pyridine derivatives were prepared with excellent yields (82-94%) via a three-component, one-pot synthesis of aromatic aldehydes, substituted acetophenones, and ammonium acetate in the presence of 0.4 mol% of Zn3(PO4)2·4H2O using an ethanol/water (4/1) mixture as the solvent, while substituted alkenes were synthesized with up to 90% yield using the prepared catalyst. The experimental results demonstrate the efficiency of these new catalytic syntheses that present various advantages such as short reaction times, excellent yields, and an environmentally friendly profile.

2.
Water Sci Technol ; 81(2): 199-209, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32333653

ABSTRACT

Sterile phosphate (SP) was investigated for phosphorus removal from wastewater using batch adsorption experiments. The novel adsorbent is a mining by-product obtained from the phosphate mining plants having a strong affinity with phosphorus ions present in wastewater. The results of the batch adsorption experiments indicated that 30 min of contact time between the adsorbent and wastewater was sufficient for attaining equilibrium. The phosphorus removal from wastewater increased with increasing initial phosphorus concentration, adsorbent dose and temperature, while it decreased with increasing initial pH values. The maximum phosphorus removal efficiency was noted to be 94.4%. It was achieved in slightly acidic conditions (pH = 4), with an adsorbent dose and initial phosphorus concentration of 3 g L-1 and 20 mg L-1, respectively, and at room temperature. Kinetic analysis showed that phosphorus adsorption onto sterile phosphate was best fitted with the pseudo-second order kinetic model. The adsorption equilibrium data fitted well to the Langmuir model equation, indicating monolayer coverage of the adsorbent. The adsorption capacity calculated from the Langmuir model equation was found to be 7.962 mg g-1. Comparing with some industrial products and natural mineral adsorbents, sterile phosphate was found to be the most efficient adsorbent for phosphorus removal from wastewater.


Subject(s)
Phosphorus , Wastewater , Adsorption , Hydrogen-Ion Concentration , Kinetics , Phosphates
3.
Chemosphere ; 241: 125009, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31597109

ABSTRACT

Iron (III) was incorporated, to the surface of a synthesized ZnO, using two nominal molar percentages of Fe (III): 1% and 5% Fe relative to ZnO. Samples dried and calcined at 200 °C and 400 °C for 2 h, were characterized by XRD, XPS, XRF, N2-adsorption-BET and (UV-vis)-DRS. Photocatalytic activities of the catalysts were assessed based on the degradation of rhodamine B (RhB) and caffeine (CAF) in aqueous solution under two irradiation conditions: UV and visible light illumination. Prior to the photocatalytic tests, the interaction of each one of the substrates with either Fe(III) or Fe(II) was studied in homogeneous medium under UV-illumination and oxygenated environment. It was found that Fe (III) can play an important role in homogeneous media in the photoassisted degradation, both of rhodamine B and caffeine, while Fe (II) does not exert a relevant role in the photoassisted degradation of the referred substrates. Fe-ZnO samples display similar or poorer performance than pure ZnO in the presence of UV light for both studied substrates. The phenomenon can be attributed to the formation of either goethite or ZnFe2O4 at the ZnO surface where the coupled Fe3+/Fe2+ can act as recombination centers for the photogenerated charges. On the contrary, all Fe-ZnO samples showed enhanced photocatalytic activity under visible illumination which seems to be independent of the iron content. In this context, the mechanisms for photoassisted degradation of both the substrates in homogeneous medium and photocatalytic degradation are discussed, as well as the role of Fe in the photodegradation processes.


Subject(s)
Caffeine/chemistry , Ferric Compounds/pharmacology , Photolysis/drug effects , Rhodamines/chemistry , Zinc Oxide/chemistry , Adsorption , Caffeine/radiation effects , Catalysis , Ferric Compounds/chemistry , Iron/chemistry , Light , Rhodamines/radiation effects , Ultraviolet Rays , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...